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More than 2 people die of skin 
cancer in the U.S. every hour* 

When detected early, the 5-year 
survival rate for melanoma is 99 
percent*

Skin Cancer
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* Data source: Skin Cancer Foundation https://www.skincancer.org/skin-cancer-information/skin-
cancer-facts/

https://www.skincancer.org/skin-cancer-information/skin-cancer-facts/
https://www.skincancer.org/skin-cancer-information/skin-cancer-facts/


Non-invasive diagnosis; 

Improves diagnostic accuracy 
compared to standard 
photography; 

Portable devices are available;

Dermoscopy  
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What have been done 

Network/feature ensembles; 

Segmentation-guided classification; 

Interpreting results.

Related Work 
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High training cost; 

Coupling models: hard to tune

Network Ensembles  

Zhuang et al. Skin lesion analysis towards melanoma detection using deep neural network ensemble. MICCAI, 2018. 
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Hand-crafted features: tricky to design; 

Deep features: requiring pre-training; 

Coupling features: hard to tune.

Feature Ensembles  

Codella et al. IBM Journal of Research and Development, 2017. 

8



Requiring accurate and complete pixel-level annotations; 

Relying much on the performance of the segmentation network; 

Not end-to-end training.

Segmentation-guided Classification - Sequential 

Yu et al.  IEEE Transactions on Medical Imaging, 2017.
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Requiring accurate pixel-level annotations; 

The performance of the segmentation network affects classification 
accuracy.

Segmentation-guided Classification - Parallel 

Chen et al. A multi-task framework with feature passing module for skin lesion classification and segmentation. ISBI, 2018.
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Post hoc analysis based on fully 
trained models; 

Experimental hypothesis on what 
the feature seems to focus on; 

Interpretability only; not helping 
with classification performance.

Visual Interpretability - Feature Map Visualization 

Molle et al. MICCAI Workshop, 2018. 
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Post-processing based on fully trained models;

Visual Interpretability - Class Activation Map 

Ge et al. MICCAI, 2017
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What can be improved 

End-to-end training; no complex ensembles or post-processing; 

Flexibility of applying pixel-level annotations 

Using them as attention prior 

Plug-in attention regularization term
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benign? 
melanoma? 

…
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benign? 
melanoma? 

…

achieving better accuracy
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benign? 
melanoma? 

…

getting interpretable results

achieving better accuracy
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benign? 
melanoma? 

…

getting interpretable results

achieving better accuracy

unified model: end-to-end training
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Overall Architecture
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Backbone: VGG-16 (without dense layers)
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Attention Modules
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Global Average Pooling
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Attention Regularization 

LD(A, A) = 1 − D(A, A) = 1 −
2 ⋅ ∑n

i=1 (ai ⋅ āi)
∑n

i=1 (ai + āi)

24



Complete Loss Function 

L = Lfocal + λ1LD (A(3), A(3)) + λ2LD (A(4), A(4))
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Complete Loss Function 

L = Lfocal + λ1LD (A(3), A(3)) + λ2LD (A(4), A(4))

If pixel-level 
annotations are 

unavailable: 
λ1 = λ2 = 0
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Datasets 
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melanoma
20%

benign
80%

seborrheic keratosis
13%

melanoma
19%

nevus
69%

benign keratosis
11%

basal cell carcinoma
5%

actinic keratosis
3%

dermatofibroma
1%

vascular lesion
1%

melanoma
11%

nevus
67%

ISIC2016 
900 training 
379 testing 

ISIC2017 
200 training 

150 validation 
600 testing

ISIC2018 
10015 training 
193 validation 

1512 testing



Baseline No.1 VGG-16
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Baseline No.2 VGG-16-GAP
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Baseline No.3 Mel-CNN
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Network Training
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Software: PyTorch 1.0; 

Hardware: Nvidia GeForce GTX 1080 Ti 

Backbone network is initialized with ImageNet pre-trained parameters; 

Stochastic gradient descent with momentum; 50 epochs 

The initial learning rate is 0.01 and is decayed by 0.1 every 10 epochs;
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Results on ISIC2016
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Results on ISIC2016
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Results on ISIC2016
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Results on ISIC2017
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Results on ISIC2017
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Results on ISIC2017
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Results on ISIC2017
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Results on ISIC2017

41



Results on ISIC2017
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ISIC2018 - “Fake” Lesion Segmentation

Training U-Net on a small segmentation dataset (2594 images) 

Generating lesion segmentation of the classification training set 
(10015 images) 

Using the generated masks for attention regularization
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Results on ISIC2018
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Results on ISIC2018
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Results on ISIC2018

47



Results on ISIC2018

“Imperfect” attention regularization 
can also improve performance.
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Conclusion

Attention helps with skin cancer diagnosis; 

Attention regularization: a flexible and robust way of 
applying any types of pixel-level prior information;

49



Future Work: User Study
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Machine Human 
Experts
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