

A Multi-scale CNN for Single Image Spectral Super-resolution 基于多尺度卷积神经网络的 单图光谱超分辨

Yiqi Yan

Supervisor: Dr. Wei Wei

July 7, 2018

答辩人:闫奕岐

指导老师: 魏巍

2018年6月7日

Contents

- Background
- Proposed method
- Comparison methods
- Implementation details
- Experimental results

- Background
- Proposed Method
- Comparison Methods
- Implementation Details
- Experimental Results

Hyperspectral Imaging

- narrow wavelength interval (e.g. 10nm)
- abundant spectral information

Hyperspectral Imaging: Application

Object Tracking

Image Segmentation

- H.V. Nguyen et al. Tracking via object reflectance using a hyperspectral video camera.
- Y. Tarabalka et al. Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognition, 43(7):2367–2379, 2010.

Hyperspectral Imaging: Application

Scene Classification

Anomaly Detection

- G. Cheng et al. When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative CNNs. IEEE Transactions on Geoscience and Remote Sensing, 2018.
- X. Kang et al. Hyperspectral anomaly detection with attribute and edge-preserving filters. IEEE Transactions on Geoscience and Remote Sensing, 55(10):5600–5611, 2017.

Hyperspectral Imaging: Practical Problem

V.S

It is hard to directly acquire "fully high-resolution" image

- Hyperspectral image: low spatial resolution
- Conventional image: low spectral resolution

Solution: Super-resolution Methods

- spatial domain

Fusion-based Method

Deep Learning

- C. Lanaras et al. Hyperspectral super-resolution by coupled spectral unmixing. CVPR 2015
- Wang et al. Deep residual convolutional neural network for hyperspectral image superresolution. ICIGP 2017.

Solution: Super-resolution Methods

----- spatial domain

- High cost: still need hyperspectral sensors
- (Fusion-based) need well registered hyper-RGB image pair

Spatial super-resolution is still not practical in reality!

Solution: Super-resolution Methods

— spectral domain

- Low cost: only RGB sensor is needed
- Single image: no need for extra data in addition to RGB images
- Our work focuses on spectral super-resolution

- Background
- Proposed Method
- Comparison Methods
- Implementation Details
- Experimental Results

Motivation

- Inherent correlation of natural images
- Local and non-local similarity
- Multi-scale information

Basic Building Blocks

- Conv: 3 × 3 convolution + batch normalization + leaky ReLU + dropout
- Downsample: regular max-pooling layer
- Upsample: pixel shuffle

 "Conv m": convolutional layers with an output of m feature maps

- green block: 3 × 3 convolution
- red block: 1 × 1 convolution
- gray arrows: feature concatenation

Input

Intuition: encoder-decoder pattern

- ✓ extracting features
- ✓ increasing receptive field
- ✓ non-local information

Decoder

- ✓ reconstructing spectra based on deep features
- ✓ inducing multi-scale information by skip connections

- Background
- Proposed Method
- Comparison Methods
- Implementation Details
- Experimental Results

Baseline: Spline Interpolation

- a polynomial is assigned between each pair of data points
- the boundaries of polynomials are continuously differentiable
- provides small interpolation error despite the low degree of polynomials

Sparse Coding (Arad et al.)

- Training: compute hyperspectral dictionary using *K-SVD*
- Reconstruction: compute sparse coefficients using *orthogonal* matching pursuit (OMP)

B. Arad et al. Sparse recovery of hyperspectral signal from natural RGB images. ECCV 2016.

A+ Method

- Training: compute hyperspectral dictionary using *K-SVD*; compute sparse coefficients via sparse least square problem
- Offline compute and store the projection matrices
- Reconstruction: use the projection matrix to embed RGB samples into hyperspectra space

J. Aeschbacher et al. In defense of shallow learned spectral reconstruction from RGB images. CVPRW 2017

Deep Learning (Galliani et al.)

S. Galliani et al. Learned spectral super-resolution. CoRR, abs/1703.09470, 2017. http://arxiv.org/abs/1703.09470.

- Background
- Proposed Method
- Comparison Methods
- Implementation Details
- Experimental Results

Spline Interpolation

- data protocol: 31 bands; 400~700 nm with 10 nm interval
- MATLAB code

```
x = [31, 16, 6];
y = rgb;
xx = 1:31;
spectrum = spline(x, y, xx);
```


Sparse Coding Methods (Arad et al. & A+)

Fit the LSR projection matrix using trainin data via regular *linear regression*

Deep Learning Methods (Galliani et al. & Ours)

Hyper-parameters

	Galliani $et \ al.$	Ours
Dropout rate	0.5	0.2
Slope for leaky ReLU	0.2	0.2
Initial learning rate	2×10^{-3}	5×10^{-5}
Weight penalty	1×10^{-6}	1×10^{-6}
Weight initialization	${\it HeUniform}$	$\operatorname{HeNormal}$

- Optimizer: Adam
- Learning rate decay strategy
- ✓ Galliani et al.: 2×10^{-3} for 50 epochs + 2×10^{-4} for 50 epochs
- ✓ Ours: decayed by 0.93 every 10 epochs

Dataset: NTIRE2018

	number of images	size	bands	spectral band
NTIRE2018	256 training + 5 test	1392×1300	31	$400 \sim 700 nm$
CAVE	32	512×512	31	$400 \sim 700 nm$
HARVARD	50	1024×1024	31	$420 \sim 720 nm$

NTIRE2018: latest & largest!

NTIRE 2018 challenge on spectral reconstruction from RGB images (CVPR 2018) http://www.vision.ee.ethz.ch/ntire18/

Evaluation Metrics

– pixel-level reconstruction error

• absolute root mean square error (RMSE)

$$RMSE_{1} = \frac{1}{n} \sum_{i=1}^{n} \sqrt{\left(I_{h}^{(i)} - I_{e}^{(i)}\right)^{2}}$$
$$RMSE_{2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(I_{h}^{(i)} - I_{e}^{(i)}\right)^{2}}$$

relative root mean square error (rRMSE)

$$rRMSE_{1} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sqrt{\left(I_{h}^{(i)} - I_{e}^{(i)}\right)^{2}}}{I_{h}^{(i)}}$$
$$rRMSE_{2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \frac{\left(I_{h}^{(i)} - I_{e}^{(i)}\right)^{2}}{\bar{I}_{h}^{2}}}$$

 $I_h^{(i)}$, $I_e^{(i)}$: *i*th element of the real and estimated hyperspectral images

 $\overline{I_h}$: the average of all elements in I_h

n: number of elements in an image

1

Evaluation Metrics

- spectral similarity

Spectral angle mapper

$$SAM = \frac{1}{m}cos^{-1} \left(\sum_{j=1}^{m} \frac{(\boldsymbol{p}_{h}^{(j)})^{T} \cdot \boldsymbol{p}_{e}^{(j)}}{\|\boldsymbol{p}_{h}^{(j)}\|_{2} \cdot \|\boldsymbol{p}_{e}^{(j)}\|_{2}} \right)$$

 $p_h^{(j)}, p_e^{(j)}$: jth hyperspectral pixel in real and estimated hyperspectral images

m: number of pixels in an image

- Background
- Proposed Method
- Comparison Methods
- Implementation Details
- Experimental Results

Convergence Analysis

Quantitative Results

			$RMSE_1$				
	DOIL 00057	DOIL 00050		DOIL 00969	DOIL 00065	Arranama	
	BGU_00257	BGU_00259	BGU_00261	BGU_00263	BGU_00265	Average	
Interpolation	1.8622	1.7198	2.8419	1.3657	1.9376	1.9454	
Arad $et al$.	1.7930	1.4700	1.6592	1.8987	1.2559	1.6154	
A+	1.3054	1.3572	1.3659	1.4884	0.9769	1.2988	
Galliani $et \ al.$	0.7330	0.7922	0.8606	0.5786	0.8276	0.7584	
Our	0.6172	0.6865	0.9425	0.5049	0.8375	0.7177	
$RMSE_2$							
	BGU_00257	BGU_00259	BGU_00261	BGU_00263	BGU_00265	Average	
Interpolation	3.0774	2.9878	4.1453	2.0874	3.9522	3.2500	
Arad $et \ al.$	3.4618	2.3534	2.6236	2.5750	2.0169	2.6061	
A+	2.1911	1.9572	1.9364	2.0488	1.3344	1.8936	
Galliani $et \ al.$	1.2381	1.2077	1.2577	0.8381	1.6810	1.2445	
Ours	0.9768	1.3417	1.6035	0.7396	1.7879	1.2899	

$rRMSE_1$									
	BGU_00257	BGU_00259	BGU_00261	BGU_00263	BGU_00265	Average			
Interpolation	0.0658	0.0518	0.0732	0.0530	0.0612	0.0610			
Arad $et al$.	0.0807	0.0627	0.0624	0.0662	0.0560	0.0656			
A+	0.0580	0.0589	0.0612	0.0614	0.0457	0.0570			
Galliani $et \ al.$	0.0261	0.0268	0.0254	0.0237	0.0289	0.0262			
Ours	0.0235	0.0216	0.0230	0.0205	0.0278	0.0233			
			$rRMSE_2$						
	BGU_00257	BGU_00259	BGU_00261	BGU_00263	BGU_00265	Average			
Interpolation	0.1058	0.0933	0.1103	0.0759	0.1338	0.1038			
Arad $et al$.	0.1172	0.0809	0.0819	0.0685	0.0733	0.0844			
A+	0.0580	0.0589	0.0612	0.0614	0.0457	0.0610			
Galliani $et \ al.$	0.0453	0.0372	0.0331	0.0317	0.0562	0.0407			
Ours	0.0357	0.0413	0.0422	0.0280	0.0598	0.0414			
	SAM (degree)								
	BGU_00257	BGU_00259	BGU_00261	BGU_00263	BGU_00265	Average			
Interpolation	3.9620	3.0304	4.2962	3.1900	3.9281	3.6813			
Arad $et al$.	4.2667	3.7279	3.4726	3.3912	3.3699	3.6457			
A+	3.2952	3.5812	3.2952	3.0256	3.2952	3.2985			
Galliani $et \ al.$	1.4725	1.5013	1.4802	1.4844	1.8229	1.5523			
Ours	1.3305	1.2458	1.7197	1.1360	1.9046	1.4673			

Visual Results

Visual Results

Visual Results

Sensitive Analysis

	Galliani et al.	Galliani $et \ al.$	Increment	Ours	Ours	Increment
	Gamam et at.	(no dropout)	(%)		(no dropout)	(%)
$RMSE_1$	0.7584	1.6092	112.18	0.7177	1.0662	48.56
$RMSE_2$	1.2445	2.0492	64.66	1.2899	1.8168	40.85
$rRMSE_1$	0.0262	0.0617	135.50	0.0233	0.0320	37.34
$rRMSE_2$	0.0407	0.0673	65.36	0.0414	0.0593	43.24
SAM	1.5523	2.1358	37.59	1.4673	1.6206	10.45

our network is *more robust* and *less sensitive* to hyper-parameters

Sensitive Analysis

Publication

Yiqi Yan, Lei Zhang, Wei Wei, Yanning Zhang, *Accurate Spectral Super-resolution from Single RGB Image Using Multi-scale CNN*. Submitted to Chinese Conference on Pattern Recognition and Computer Vision (PRCV) 2018