Course Presentation Deep Learning for Object Detection

Yiqi Yan

May 10, 2017

Part I Fundamental Backgrounds

Convolution

Single Filter

Multiple Filters

Convolution: case study, 2 filters

Filte	er W	1 (3x3x3)
w1[:,	,0]
0	-1	-1
-1	1	1
1	1	-1
w1[:,	,1]
-1	0	0
0	0	0
0	-1	-1
w1[:,	, 2]
0	-1	-1
1	1	1
1	-1	0

Output Volume (3x3x2)			
0[:	,:,	0]	
8	5	6	
7	-1	5	
4	2	2	
0[:	,:,	1]	
0	-1	4	
3	2	3	
-1	-3	0	

Convolution: receptive field

The deeper the network goes, the larger the receptive fields will be

Pooling

Pooling on one single channel

Pooling on the whole feature map

Computer Vision Tasks

Classification

Input: Image

Output: Class label

Evaluation metric: Accuracy

"this is a cat"

Classification + Localization

Input: Image

Output: Box in the image (x, y, w, h)

Evaluation metric: Intersection over Union

"here is a cat"

Computer Vision Tasks

Object Detection

DOG, (x, y, w, h) CAT, (x, y, w, h) CAT, (x, y, w, h) DUCK (x, y, w, h)

Multiple Objects in one image!

Instance Segmentation

Pixel-wise Classification!

Part II State-of-art methods for object detection

- ☐ Group One: RCNN & Modifications
 - (CVPR 2014) RCNN: Region Based CNN (TOO SLOW!)
 - (ECCV 2014) SPP-net: Spatial Pyramid Pooling in CNN
 - (ICCV 2015) Fast RCNN
 - (NIPS 2015) Faster RCNN (Online Object Detection)
- ☐ Group Two: Fast! *Online* Object Detection
 - (ECCV 2016) SSD: Single Shot MultiBox Detector
 - (CVPR 2016) YOLO
 - (CVPR 2017) YOLO9000
- ☐ Group Three: Deformable Convolutional Filters
 - (CVPR 2015) DeepID-Net
 - (arXiv 2017) Deformable Convolutional Networks
- ☐ Group Four: Detection + Segmentation
 - (arXiv 2017) Mask R-CNN

Part III Region Based CNN

Motivation

Problem One: CNN seems unsuited for Object Detection

- Unlike image classification, detection requires <u>localizing</u>
 <u>objects</u> within an image
- Deep CNNs have very large receptive fields, which makes precise localization very challenging

Problem Two: Deep networks need large dataset to train

	PASCAL VOC (2010)	ImageNet Detection (ILSVRC 2014)	MS-COCO (2014)
Number of classes	20	200	80
Number of images (train + val)	~20k	~470k	~120k
Mean objects per image	2.4	1.1	7.2

Framework

Solve Problem One

- Extract region proposals
- Recognition using regions

Solve Problem Two

- Supervised Pre-training on ImageNet
- Domain-specified fine-tuning

Region Proposals

Find "blobby" image regions that are likely to contain objects

Region Proposals: Selective Search

Bottom-up segmentation, merging regions at multiple scales

over-segmentation region-merging

Uijlings et al, "Selective Search for Object Recognition", IJCV 2013

Training methodStep 1: Supervised Pre-training

Train a <u>classification</u> model for ImageNet (AlexNet, VGGNet, etc.)

No localization can be done, thus this is just pre-training the parameters.

AlexNet (2012)

VGG-19 (2015)

Training methodStep 2: Domain-specified fine-tuning

Change network architecture
Instead of 1000 ImageNet classes, want N object classes +

background (N+1 classes)

Need to reinitialize the soft-max layer

Fine-tuning using Region Proposals

Keep training model using positive / negative regions from detection images

This time, use *Detection Datasets* (VOC, ILCVRC, COC, etc.)

Run Detection

Now we get the trained network, let us test it!

- Step 1: Extract <u>region proposals</u> for all images
- Step 2: (for each region) run through CNN, save <u>pool5</u>
 features
- Step 3: use binary SVM to classify region features
 (WHY NOT just use soft-max)
- Step 5: bounding box regression: For each class, train
 a <u>linear regression model</u> to make up for "slightly wrong" proposals

Run Detection

Part IV Fast RCNN

R-CNN Problems: too slow!

- Training is a multi-stage pipeline:
 RCNN→SVMs→bounding-box regression
- Training is expensive in space and time
 <u>CNN features are stored</u> for use of training SVMs and regression
 - ~200GB disk place for PASCAL dataset!
- Object detection is slow:
 features are extracted from <u>each object proposal</u>
 47s / image on a GPU!

Fast R-CNN Framework

ROI (region of interest) Pooling

- Pooling each region into a <u>fixed size</u> (7 X 7 in the paper)
- Back propagate similar to traditional max pooling

Multi-task loss

The network outputs two vectors per ROI

- 1. Soft-max probabilities for *classification*
- 2. Per-class bounding-box regression offsets

$$L(p, u, t^{u}, v) = L_{cls}(p, u) + \lambda[u \ge 1] L_{loc}(t^{u}, v)$$

1st term: traditional cross-entropy loss for soft-max

2nd term: error between predicted and true bounding-box

Why superior to RCNN: problem #1 & #2

RCNN problem #1: Training is a multi-stage pipeline
RCNN problem #2: Training is expensive in space and time

Faster RCNN: end-to-end training; no need to store features

Why superior to RCNN: problem #3

RCNN problem #3: Object detection is slow because features are extracted from each object proposal

Fast RCNN: just run the whole image through CNN; regions are extracted from feature map

Comparison

	R-CNN	Fast R-CNN
Test time per image	47 seconds	0.32 seconds
(Speedup)	1x	146x
Test time per image with Selective Search	50 seconds	2 seconds
(Speedup)	1x	25x

Fast RCNN is not fast enough!

Bottleneck: Selective Search Region Proposal

Part V Faster RCNN Online Detection!

Fast RCNN is not fast enough

Test time per image	0.32 seconds
(Speedup)	146x
Test time per image with Selective Search	2 seconds
(Speedup)	25x

Main bottleneck: Selective Search Region Proposal

Faster RCNN: Why not just *make the CNN do region*

proposals too!

Faster RCNN framework

Insert a <u>Region Proposal</u>

<u>Network (RPN)</u> trained to produce region proposals directly

ROI Pooling, soft-max classifier and bounding box regression are just like Fast RCNN

Region Proposal Network

Similar to the multi-task training in fast RCNN:

<u>classification + bounding box</u>

<u>prediction.</u>

The difference is that we only need two-class classification here: *object & not object*

• End-to-end joint training!

- RPN classification
- RPN bbx regression
- Fast RCNN classification
- Fast R-CNN bbx regression

Comparison

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
(Speedup)	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	66.9

Part VI YOLO: You Only Look On Once

YOLO Framework

- Divide image into S x S grid (7 X 7 in the parper)
- Within each grid cell predict:

B Boxes: 4 coordinates + confidence

C Class scores

- Regression from image to
 7x7x(5*B+C) tensor
- Direct prediction using a CNN

Comparison

Faster than Faster R-CNN, but not as good

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [30]	2007	16.0	100
30Hz DPM [30]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [37]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[27]	2007+2012	73.2	7
Faster R-CNN ZF [27]	2007+2012	62.1	18

Great Contributors

- Ross Girshick: http://www.rossgirshick.info/
- Kaiming He: http://kaiminghe.com/
- Joseph Chet Redmon: https://pjreddie.com/

Code

- R-CNN
 (Cafffe+MATLAB): https://github.com/rbgirshick/rcnn
- Fast R-CNN
 (Caffe+MATLAB): https://github.com/rbgirshick/fast-rcnn
- Faster R-CNN
 (Caffe+MATLAB): https://github.com/ShaoqingRen/faster_rcnn
 (Caffe+Python): https://github.com/rbgirshick/py-faster-rcnn
 - YOLO: http://pjreddie.com/darknet/yolo/