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F u n d a m e n t a l  B a c k g r o u n d s
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 Convolution

Single Fi lter Multiple Fi lters
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 Convolution: case study, 2 f i lters
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 Convolution: receptive field

receptive field

3 X 3

The deeper the network goes, 

the larger the recept ive f ie lds  wi l l  be
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 Pooling

Pooling on one single channel

Pooling on the whole feature map
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“this is a cat”

 Computer Vision Tasks

“here is a cat”



8

 Computer Vision Tasks

Pixel-wise 
Classif ication!

Multiple Objects
in one image!
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Pa r t  I I

S t a t e - o f- a r t  m e t h o d s

f o r  o b j e c t  d e t e c t i o n  
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 Group One: RCNN & Modifications

 (CVPR 2014) RCNN: Region Based CNN (TOO SLOW!)

 (ECCV 2014) SPP-net: Spatial Pyramid Pooling in CNN

 (ICCV 2015) Fast RCNN

 (NIPS 2015) Faster RCNN (Online Object Detection)

 Group Two: Fast! Online Object Detection

 (ECCV 2016) SSD: Single Shot MultiBox Detector

 (CVPR 2016) YOLO 

 (CVPR 2017) YOLO9000

 Group Three: Deformable Convolutional Filters

 (CVPR 2015) DeepID-Net

 (arXiv 2017) Deformable Convolutional Networks

 Group Four: Detection + Segmentation

 (arXiv 2017) Mask R-CNN
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Pa r t  I I I

Re g i o n  B a s e d  C N N
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 Motivation

Problem One: CNN seems unsuited for Object Detection

 Unlike image classification, detection requires localizing 

objects within an image

 Deep CNNs have very large receptive fields, which makes

precise localization very challenging

Problem Two: Deep networks need large dataset to train
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 Framework

Solve Problem One

 Extract region proposals

 Recognition using regions

Solve Problem Two

 Supervised Pre-training on ImageNet

 Domain-specified fine-tuning 
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 Region Proposals

Find “blobby” image regions that are likely to contain objects
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 Region Proposals:  Selective Search 

Uijlings et al,
“Selective Search for Object Recognition”, IJCV 2013

over-segmentation region-merging
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 Training method

Step 1: Supervised Pre-training

Train a classification model for ImageNet (AlexNet, VGGNet, etc.)

No localization can be done, thus this is just pre-training the 

parameters.

VGG-19

(2015)
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 Training method

Step 2: Domain-specified fine-tuning 

Change network architecture

Instead of 1000 ImageNet classes, want N object classes + 

background (N+1 classes)

Need to reinitialize the soft-max layer

Fine-tuning using Region Proposals

Keep training model using positive / negative regions from 

detection images

This time, use Detection Datasets (VOC, ILCVRC, COC, etc.)
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 Run Detection

Now we get the trained network, let us test it!

 Step 1: Extract region proposals for all images

 Step 2: (for each region) run through CNN, save pool5

features

 Step 3: use binary SVM to classify region features 

(WHY NOT just use soft-max)

 Step 5: bounding box regression: For each class, train 

a linear regression model to make up for “slightly 

wrong” proposals
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 Run Detection
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Pa r t  I V

Fa s t  R C N N
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 R-CNN Problems: too slow!

 Training is a multi-stage pipeline: 

RCNN⟶SVMs⟶bounding-box regression

 Training is expensive in space and time                         

CNN features are stored for use of training SVMs and 

regression

~200GB disk place for PASCAL dataset!

 Object detection is slow:                                              

features are extracted from each object proposal 

47s / image on a GPU!
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 Fast R-CNN Framework
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 ROI (region of interest) Pooling

 Pooling each region into a fixed size (7 X 7 in the paper)

 Back propagate similar to traditional max pooling
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 Multi-task loss

The network outputs two vectors per ROI

1. Soft-max probabilities for classification

2. Per-class bounding-box regression offsets

1st term: traditional cross-entropy loss for soft-max

2nd term: error between predicted and true bounding-box



25

 Why superior to RCNN: problem #1 & #2

RCNN problem #1: Training is a 

multi-stage pipeline

RCNN problem #2: Training is 

expensive in space and time 

Faster RCNN: end-to-end 

training; no need to store 

features



26

 Why superior to RCNN: problem #3

RCNN problem #3: Object detection 

is slow because features are 

extracted from each object proposal

Fast RCNN: just run the whole 

image through CNN; regions are 

extracted from feature map
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 Comparison

Fast RCNN is not fast enough!

Bottleneck： Selective Search Region Proposal
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Pa r t  V

Fa s t e r  R C N N

O n l i n e  D e t e c t i o n !
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 Fast RCNN is not fast enough

Main bottleneck： Selective Search Region Proposal

Faster RCNN: Why not just make the CNN do region 

proposals too!
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 Faster RCNN framework

Insert a Region Proposal

Network (RPN) trained to 

produce region proposals 

directly

ROI Pooling, soft-max 

classifier and bounding 

box regression are just like 

Fast RCNN
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 Region Proposal Network

Similar to the multi-task 

training in fast RCNN: 

classification + bounding box 

prediction.

The difference is that we only 

need two-class classification 

here: object & not object
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 End-to-end joint training!

 RPN classification

 RPN bbx regression

 Fast RCNN classification

 Fast R-CNN bbx

regression
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 Comparison
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Pa r t  V I

YO LO :  

Yo u  O n l y  L o o k  O n  O n c e
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 YOLO Framework

 Divide image into S x S 

grid (7 X 7 in the parper)

 Within each grid cell 

predict:                               

B Boxes: 4 coordinates + 

confidence                         

C Class scores

 Regression from image to 

7 x 7 x (5 * B + C) tensor

 Direct prediction using a 

CNN
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Faster than Faster R-CNN, but not as good

 Comparison
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 Ross Girshick: http://www.rossgirshick.info/

 Kaiming He: http://kaiminghe.com/

 Joseph Chet Redmon: https://pjreddie.com/

 Great Contributors

 Code

 R-CNN 

(Cafffe+MATLAB): https://github.com/rbgirshick/rcnn

 Fast R-CNN

(Caffe+MATLAB): https://github.com/rbgirshick/fast-rcnn

 Faster R-CNN

(Caffe+MATLAB): https://github.com/ShaoqingRen/faster_rcnn

(Caffe+Python): https://github.com/rbgirshick/py-faster-rcnn

 YOLO: http://pjreddie.com/darknet/yolo/

http://www.rossgirshick.info/
http://kaiminghe.com/
https://pjreddie.com/
https://github.com/rbgirshick/rcnn
https://github.com/rbgirshick/fast-rcnn
https://github.com/ShaoqingRen/faster_rcnn
https://github.com/rbgirshick/py-faster-rcnn
http://pjreddie.com/darknet/yolo/

