
Yiqi Yan

May 10, 2017

Pa r t I

F u n d a m e n t a l B a c k g r o u n d s

3

 Convolution

Single Fi lter Multiple Fi lters

4

 Convolution: case study, 2 f i lters

5

 Convolution: receptive field

receptive field

3 X 3

The deeper the network goes,

the larger the recept ive f ie lds wi l l be

6

 Pooling

Pooling on one single channel

Pooling on the whole feature map

7

“this is a cat”

 Computer Vision Tasks

“here is a cat”

8

 Computer Vision Tasks

Pixel-wise
Classif ication!

Multiple Objects
in one image!

9

Pa r t I I

S t a t e - o f- a r t m e t h o d s

f o r o b j e c t d e t e c t i o n

10

 Group One: RCNN & Modifications

 (CVPR 2014) RCNN: Region Based CNN (TOO SLOW!)

 (ECCV 2014) SPP-net: Spatial Pyramid Pooling in CNN

 (ICCV 2015) Fast RCNN

 (NIPS 2015) Faster RCNN (Online Object Detection)

 Group Two: Fast! Online Object Detection

 (ECCV 2016) SSD: Single Shot MultiBox Detector

 (CVPR 2016) YOLO

 (CVPR 2017) YOLO9000

 Group Three: Deformable Convolutional Filters

 (CVPR 2015) DeepID-Net

 (arXiv 2017) Deformable Convolutional Networks

 Group Four: Detection + Segmentation

 (arXiv 2017) Mask R-CNN

11

Pa r t I I I

Re g i o n B a s e d C N N

12

 Motivation

Problem One: CNN seems unsuited for Object Detection

 Unlike image classification, detection requires localizing

objects within an image

 Deep CNNs have very large receptive fields, which makes

precise localization very challenging

Problem Two: Deep networks need large dataset to train

13

 Framework

Solve Problem One

 Extract region proposals

 Recognition using regions

Solve Problem Two

 Supervised Pre-training on ImageNet

 Domain-specified fine-tuning

14

 Region Proposals

Find “blobby” image regions that are likely to contain objects

15

 Region Proposals: Selective Search

Uijlings et al,
“Selective Search for Object Recognition”, IJCV 2013

over-segmentation region-merging

16

 Training method

Step 1: Supervised Pre-training

Train a classification model for ImageNet (AlexNet, VGGNet, etc.)

No localization can be done, thus this is just pre-training the

parameters.

VGG-19

(2015)

17

 Training method

Step 2: Domain-specified fine-tuning

Change network architecture

Instead of 1000 ImageNet classes, want N object classes +

background (N+1 classes)

Need to reinitialize the soft-max layer

Fine-tuning using Region Proposals

Keep training model using positive / negative regions from

detection images

This time, use Detection Datasets (VOC, ILCVRC, COC, etc.)

18

 Run Detection

Now we get the trained network, let us test it!

 Step 1: Extract region proposals for all images

 Step 2: (for each region) run through CNN, save pool5

features

 Step 3: use binary SVM to classify region features

(WHY NOT just use soft-max)

 Step 5: bounding box regression: For each class, train

a linear regression model to make up for “slightly

wrong” proposals

19

 Run Detection

20

Pa r t I V

Fa s t R C N N

21

 R-CNN Problems: too slow!

 Training is a multi-stage pipeline:

RCNN⟶SVMs⟶bounding-box regression

 Training is expensive in space and time

CNN features are stored for use of training SVMs and

regression

~200GB disk place for PASCAL dataset!

 Object detection is slow:

features are extracted from each object proposal

47s / image on a GPU!

22

 Fast R-CNN Framework

23

 ROI (region of interest) Pooling

 Pooling each region into a fixed size (7 X 7 in the paper)

 Back propagate similar to traditional max pooling

24

 Multi-task loss

The network outputs two vectors per ROI

1. Soft-max probabilities for classification

2. Per-class bounding-box regression offsets

1st term: traditional cross-entropy loss for soft-max

2nd term: error between predicted and true bounding-box

25

 Why superior to RCNN: problem #1 & #2

RCNN problem #1: Training is a

multi-stage pipeline

RCNN problem #2: Training is

expensive in space and time

Faster RCNN: end-to-end

training; no need to store

features

26

 Why superior to RCNN: problem #3

RCNN problem #3: Object detection

is slow because features are

extracted from each object proposal

Fast RCNN: just run the whole

image through CNN; regions are

extracted from feature map

27

 Comparison

Fast RCNN is not fast enough!

Bottleneck： Selective Search Region Proposal

28

Pa r t V

Fa s t e r R C N N

O n l i n e D e t e c t i o n !

29

 Fast RCNN is not fast enough

Main bottleneck： Selective Search Region Proposal

Faster RCNN: Why not just make the CNN do region

proposals too!

30

 Faster RCNN framework

Insert a Region Proposal

Network (RPN) trained to

produce region proposals

directly

ROI Pooling, soft-max

classifier and bounding

box regression are just like

Fast RCNN

31

 Region Proposal Network

Similar to the multi-task

training in fast RCNN:

classification + bounding box

prediction.

The difference is that we only

need two-class classification

here: object & not object

32

 End-to-end joint training!

 RPN classification

 RPN bbx regression

 Fast RCNN classification

 Fast R-CNN bbx

regression

33

 Comparison

34

Pa r t V I

YO LO :

Yo u O n l y L o o k O n O n c e

35

 YOLO Framework

 Divide image into S x S

grid (7 X 7 in the parper)

 Within each grid cell

predict:

B Boxes: 4 coordinates +

confidence

C Class scores

 Regression from image to

7 x 7 x (5 * B + C) tensor

 Direct prediction using a

CNN

36

Faster than Faster R-CNN, but not as good

 Comparison

37

 Ross Girshick: http://www.rossgirshick.info/

 Kaiming He: http://kaiminghe.com/

 Joseph Chet Redmon: https://pjreddie.com/

 Great Contributors

 Code

 R-CNN

(Cafffe+MATLAB): https://github.com/rbgirshick/rcnn

 Fast R-CNN

(Caffe+MATLAB): https://github.com/rbgirshick/fast-rcnn

 Faster R-CNN

(Caffe+MATLAB): https://github.com/ShaoqingRen/faster_rcnn

(Caffe+Python): https://github.com/rbgirshick/py-faster-rcnn

 YOLO: http://pjreddie.com/darknet/yolo/

http://www.rossgirshick.info/
http://kaiminghe.com/
https://pjreddie.com/
https://github.com/rbgirshick/rcnn
https://github.com/rbgirshick/fast-rcnn
https://github.com/ShaoqingRen/faster_rcnn
https://github.com/rbgirshick/py-faster-rcnn
http://pjreddie.com/darknet/yolo/

