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Abstract

Skin cancer is one of the most common types of cancers in the world and is a big concern

for people’s health. In recent years, automatic algorithms to recognize skin cancers from

dermoscopy images have gained lots of popularity, especially deep-learning-based methods.

In this thesis, we propose an attention-based deep learning model for skin cancer recogni-

tion. The attention modules, which are learned together with other network parameters,

estimate attention maps that highlight image regions of interest that are relevant to lesion

classification. These attention maps provide a more interpretable output as opposed to only

outputting a class label. Additionally, we propose to utilize prior information by regulariz-

ing attention maps with regions of interest (ROIs) (e.g., lesion segmentation or dermoscopic

features). To our knowledge, we are the first to introduce an end-to-end trainable attention

module with regularization for skin cancer recognition.

We provide both quantitative and qualitative results on public datasets to demonstrate the

effectiveness of our method. Experiments show that: (1) the attention module is capable

of ruling out irrelevant areas in the image; (2) when the proposed attention regularization

terms are applied, both the classification performance and the attention maps can be further

refined; (3) the attention regularization is quite robust and flexible in that it can take

advantage of sparse or even imperfect ROI maps.

The code of this work is released at https://github.com/SaoYan/IPMI2019-AttnMel.

Keywords: skin cancer; deep learning; attention mechanism
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Chapter 1

Introduction

1.1 Background

Skin diseases are quite common [37] and have been a big concern of people’s health [15].

Early diagnosis of skin cancer is important for proper and timely treatment. Even though

histopathology analysis has been the “gold standard” for recognizing skin lesions such as

melanoma [41], biopsy is an invasive approach with higher cost and may even cause infec-

tions [43]. Non-invasive diagnosis [20, 11, 30], on the other hand, can reduce costs and avoid

biopsy complications.

Among all the non-invasive methods, dermoscopy is one of the most common techniques.

It provides enhanced imaging of deep levels of the skin by eliminating the skin’s surface

reflection (Fig. 1.1). Used by expert dermatologists, dermoscopy facilitates skin lesion diag-

nosis to a large degree. For example, medical research has witnessed an improvement of 49%

(p = 0.001) in diagnostic accuracy for melanoma with dermoscopy technique, compared to

standard photography [25].

In recent years, computer-aided skin cancer diagnosis has gained much popularity [13,

7, 6], including skin lesion recognition [21, 23], segmentation [33, 32, 18], and fermoscopic

feature detection [24]. On the one hand, with the development of internet and inexpensive

consumer dermatoscope attachments for smart phones [17], automated dermoscopic assess-

ment algorithms can have a positive influence on patient care. For example, it has been

shown that deep networks are capable of classifying skin cancer with an accuracy compa-
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(a) (b)

Figure 1.1: (a) A typical dermoscopy imaging device (The image comes from https://www.
poliklinikabagatin.hr/); (b) Dermoscopy image samples

rable to dermatologists [10]. On the other hand, computers can assist human experts by

providing interpretable results [42, 46].

This thesis focuses on automated skin cancer classification based on dermoscopy images.

An attention-based deep learning approach is proposed to not only achieve high accuracy,

but also generate interpretable results to provide dermatologists with more insights into the

diagnosis. Additionally, we propose to utilize prior information by regularizing attention

maps with regions of interest (ROIs). Whenever such prior information is available, both the

classification performance and the attention maps can be further refined. To our knowledge,

we are the first to introduce an end-to-end trainable attention module with regularization

for skin cancer recognition. We provide both quantitative and qualitative results on public

datasets to demonstrate the effectiveness of our method.

1.2 Related Work

1.2.1 Network or Feature Ensembles

Ensemble-based methods either train multiple independent classifiers and combine their

predictions (network ensembles, Fig. 1.2 a), or extract various kinds of features and pass

the merged feature to one single classifier (feature ensembles, Fig. 1.2 b).

2
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(a)

(b)

Figure 1.2: (a) Example of network ensemble (the figure is from Zhuang et al. [58]); (b)
Example of feature ensemble (the figure is from Codella et al. [8])

Zhuang et al. [58] trained independent deep networks and used the mean confidence as

the final output. Harangi et al. [14] used an ensemble of AlexNet, VGGNet, and GoogLeNet,

fusing their final features for a shared softmax classification layer. Codella et al. [5] trained

an SVM using both deep convolutional features and sparse coding, which they later extended

to an ensemble of 8 different features [8]. Yu et al. [53, 54] aggregated deep network features

and fisher vector encoding. Nozdryn-Plotnicki et al. [34] adopted as many as 18 deep models,

trained them separately as feature extractors and built an XGBoost classifier on top of them.

The main disadvantage of the ensemble-based method is the time-consuming training

process. What’s more, developers have to carefully strike the balance of all independent

classifiers or feature extractors. Modification of one component may result in the tuning

or even re-training of others. The work in this thesis adopts an end-to-end trained model,

which is much easier to apply in the real situation.

1.2.2 Segmentation-guided Classification

Several works trained a segmentation network to guide the classification (Fig. 1.3). Yu et

al. [52] designed a two-stage method. In the first step, a segmentation network was trained,
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which was used to detect and crop the lesion from the original image. Then a classifica-

tion network was trained using the cropped image. Yang et al. [50] and Chen et al. [4]

exploited the lesion segmentation in a parallel manner by applying a multi-task model that

simultaneously tackled the problems of segmentation and classification.

These approaches require accurate and complete pixel-level annotations for each im-

age in the training set, while in most cases only image-level labels or partial pixel labels

(e.g., dermoscopic features, Fig. 2.4) are available. What’s more, the two-stage method is

not trained end-to-end. Each stage has to be tuned separately to achieve the optimal overall

performance. This thesis aims at a more flexible model, which can take advantage of either

complete or partial pixel-level labels but still works fine without them.

(a)

(b)

Figure 1.3: Segmentation-guided classification. (a) Sequential two-stage method [52] (b)
Parallel method [4]
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1.2.3 Visual Interpretability

Although deep learning methods have been widely used for skin lesion analysis, only a few

efforts have been made on interpretability. Van Molle et al. [42] visualized CNN features by

rescaling the feature map to the input size and overlapping it with the input image. They

attempted to gain insights into which image regions contribute to the results. They observed

that the features seem to focus on specific characteristics, such as skin color, lesion border,

hair, and artifacts, but there were no specific conclusions on how these features correlate

with classification. A similar feature visualization was performed by Kawahara et al. [22].

Wu et al. [46] sought image biomarkers through prediction difference analysis. Specifically,

a certain image region was corrupted each time, and the importance of that region was

represented by the difference between the prediction scores based on the original and the

corrupted images. Prediction difference analysis is a post-processing method designed to

explain a fully trained network. Ge et al. [12] computed a class activation map (CAM) [57]

as a saliency map to assign spatial weights to bilinear pooling features.

All these works involve some post hoc analysis that requires extra computation based

on a fully trained classification network, while this thesis proposes a classification model

with the learnable attention modules. No post-processing is required.

1.3 Attention Mechanism

Figure 1.4: Visualization of attention maps generated by the model proposed in Woo et
al. [45]

The concept of attention was firstly introduced in recurrent neural networks (RNN) for

machine translation [2]. The idea was rapidly extended to convolutional neural networks

5



(CNNs) and applied to various computer vision tasks such as image classification [44, 45],

image caption [51, 48, 27], visual question answering [47, 1], etc. Whatever the model archi-

tecture and application, the key idea of visual attention is consistent: generating an attention

map which assigns weight to each pixel. The higher the weight, the more contribution the

pixel makes to the final result (i.e., paying more attention to that region). An illustration

of visual attention mechanism is shown in Fig. 1.4.

Generally speaking, there are two kinds of visual attention: post hoc attention and learn-

able attention. Post hoc attention interprets fully-trained deep networks by post-processing.

It doesn’t touch the trained parameters of the model. Typical works include class activation

maps [57] network dissection [3], and gradient-based saliency visualization [39, 38]. As the

goal of this thesis is not merely interpretability, learnable attention, especially for image

classification, is what we focus on. Woo et al. [45] proposed an attention module called

CBAM which can be inserted into classic deep networks to refine the features. This thesis is

most inspired by Jetley et al. [19] that leveraged attention modules to enhance intermediate

features. This thesis extends the linear attention module proposed by Jetley et al. to more

complex non-linear computations in order to handle images with much higher resolution.

Most importantly, our model allows plug-in attention regularize terms to take advantage of

any available pixel-level prior information.

1.4 Contribution

This thesis leverages attention mechanisms for skin cancer recognition. Besides, we propose

to regularize the attention maps in order to train the model to focus on the expected regions

of interest (ROIs). Our model not only yields state-of-the-art classification performance, but

also produces attention maps indicating relevant image regions for classification. The main

contributions are as follows:

• We incorporate end-to-end trainable attention modules for melanoma recognition. The

attention maps automatically highlight image regions that are relevant to classifica-

tion, which produces additional interpretable information as opposed to a mere class

label. We perform a series of ablation studies to examine the effectiveness of attention.

6



• We introduce a flexible method to efficiently utilize pixel-level prior information via

regularizing the attention maps with regions of interest (ROIs. e.g., lesion segmenta-

tion, dermoscopic features). With prior information, the learned attention maps are

further refined and the classification performance is improved.

• The proposed regularization method can also be used to validate the effectiveness of

ROI priors. For example, we show that regularizing using image background impedes

the performance. This confirms that the model is properly deeming the background

less relevant to classification compared to the areas of skin lesion and dermoscopic

features.

This work was published in IPMI 2019 [49], and this thesis adds more experimental

results on some latest datasets.

Yiqi Yan, Jeremy Kawahara, and Ghassan Hamarneh. Melanoma recognition

via visual attention. In International Conference on Information Processing in

Medical Imaging, Lecture Notes in Computer Science, vol 11492, pages 793–804,

Springer, 2019. DOI https://doi.org/10.1007/978-3-030-20351-1_62
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Chapter 2

Methodology

2.1 Motivation

Previous research has pointed out that the shallow layers of deep networks capture some

common patterns such as edges and texture, while the deep layers respond to more complex,

class-specific features [55]. Unlike natural images of complicated scenes and objects, skin

lesions have relatively simple structure, so even the shallow features can contain necessary

information for skin cancer classification (e.g., different classes of lesions may have different

shape and texture features). CNNs typically use the deepest global feature (i.e., the output

of the final convolutional or pooling layer) for classification. Instead, we chose to directly

leverage some intermediate features and combine them with the global one.

That being said, the shallow features do have too much “plain” information, and some

may be irrelevant to the classification. This is where “attention” comes in. The attention

map filters out the minor regions and produces a refined feature that would be more dis-

criminative than the original one. The attention module should be differentiable so that the

overall network can be trained end-to-end.

The proposed network architecture is illustrated in Fig. 2.1, with the attention modules

shown as gray blocks. The inner structure of the attention module is shown in Fig. 2.2. In

the next few sections, we will describe the details of our model.
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Figure 2.1: The overall network architecture. The backbone network is VGG-16 (the yellow
and red blocks) without any dense layers. Two attention modules (described in Fig. 2.2) are
applied (the gray blocks). The three feature vectors (green blocks) are computed via global
average pooling and are concatenated together to form the final feature vector, which serves
as the input to the classification layer. The classification layer is not shown here.

2.2 Network Architecture

We adopt VGG-16 [40], with all dense layers removed, as the backbone network of our model.

We exploit the third and forth pooling features (pool-3 and pool-4) as the intermediate

features. As the deepest feature (pool-5) contains the most compressed and abstracted

information over the entire image, we use it as a global guidance (denoted as G) when

computing the attention maps for pool-3 and pool-4. Let F =
(
f1,f2, . . . ,fn

)
be any

intermediate feature (either pool-3 or pool-4), where f i is the feature vector at the i-th

spatial location. F and G are fed through an attention module (Fig. 2.2), yielding a one-

channel response map R,

R = W ~ ReLU
(
W f ~F + up

(
W g ~ G

))
, (2.1)

9



where ~ represents a convolutional operation, W f and W g are convolutional kernels with

256 filters, and the convolutional kernel W outputs a single channel. up
(
·
)
is bilinear

interpolation that aligns the spatial size.

The attention map A is then calculated as the per-pixel normalization of R,

A = Sigmoid
(
R
)
. (2.2)

Each scalar element ai ∈ A represents the degree of attention to the corresponding spatial

feature vector in F . The refined feature map, denoted as F̂ , is then computed by “pixel-

wise" multiplication. That is, each feature vector f i is multiplied by the attention element,

f̂ i = ai · f i. (2.3)

The above computation is applied separately and independently to pool-3 and pool-

4, producing the refined features F̂ (3) and F̂ (4). We obtain the final feature vector by

concatenating the global average pooling of F̂ (3), F̂ (4), and G (green blocks in Fig. 2.1). A

softmax classification layer is then formed based on this final feature.

2.3 Loss Function for Unbalanced Dataset

Typically skin cancer datasets are highly unbalanced, and the classic cross-entropy loss is

prone to bias towards the more frequent classes. Focal loss [26] has proven to be effective

in dealing with class imbalance.

The formula of the cross-entropy loss is

Lce
(
pt
)

= −log
(
pt
)
, (2.4)

where pt is the model’s estimated probability for the ground-truth class. Focal loss adds a

factor to the standard cross entropy

Lfocal
(
pt
)

= −
(
1− pt

)γ log(pt), (2.5)

10



intermediate feature (F) 256 channels

global feature (G) 256 channels

256 channels

attention map (A) F̂

input/output tensor convolution

bilinear interpolation ReLU + convolu-

tion + Sigmoid

Figure 2.2: Inner architecture of the attention module (i.e., the gray blocks in Fig. 2.1).
When the spatial size of global and intermediate features are different, feature upsampling
is done via bilinear interpolation. The sum operation is element-wise, and the multiplication
is “pixel-wise" following Eq. 2.3

where γ is a hyper-parameter.

When some sample is well classified (pt > 0.5), the focal loss for it reduces so that more

efforts will be put on other hard samples, thus training bias is avoided (Fig. 2.3).

2.4 Attention Regularization via Regions of Interest

The network is trained using focal loss when only image-level class labels are available.

Sometimes we may have access to additional pixel-level annotations that specify regions

of interest (ROIs), such as lesion segmentation and dermoscopic features (Fig. 2.4). Note

that dermoscopic features can be pretty spares, and not all images have valid dermoscopic

features. In fact it is a typical case for skin lesion datasets that a proportion of images have

“empt” dermoscopic features (all-zero annotations).

Given binary or probability maps of some specific ROIs, we incorporate these maps as

prior information to guide the attention maps. To this end, we introduce a regularization

11



Figure 2.3: Focal loss reduces when the sample is well classified. The figure is borrowed from
Lin et al. [26].

term where the ROIs serve as a reference. Inspired by Kawahara et al. [24], we minimize a

negative Sørensen-Dice-F1 loss,

LD
(
A, Ā

)
= 1−D

(
A, Ā

)
= 1−

2 ·
∑n
i=1

(
ai · āi

)∑n
i=1

(
ai + āi

) , (2.6)

where Ā is a reference map of ROIs and A is the attention map produced in Eq. 2.2. We

do not compute LD per image to avoid division-by-zero when there exists Ā with all-zero

values. Instead, we treat one batch of data as a high dimensional tensor and calculate LD

using tensors.

The proposed model generates attention maps in pool-3 and pool-4 layers (A(3), A(4)),

and we regularize both of them. Since the spatial dimension of attention maps are smaller

than the original image, the given ROI maps are downsampled to the same size as A(3) and

A(4) respectively. The downsampled maps are denoted as Ā(3) and Ā(4).

12



Figure 2.4: Examples of dermoscopic features. The figure is borrowed from Kawahara et
al. [24]

The overall loss with regularization becomes

L = Lfocal + λ1LD
(
A(3), Ā(3))+ λ2LD

(
A(4), Ā(4))

, (2.7)

where Lfocal is the focal loss discussed in section 2.3. We fix λ1 = 0.001, λ2 = 0.01. λ2 has

a larger value as the features in the deeper layers should be more discriminative.

The loss function introduced in Ep. 2.7 is quite flexible in that the regularization terms

can be plugged in whenever there are available ROI maps, and out when we only have class

labels.

13



Chapter 3

Experiments and Results

3.1 Experimental Setup

3.1.1 Datasets and Evaluation Metrics

The international skin imaging collaboration (ISIC) has hosted several skin lesion analysis

challenges [13, 7, 6]. We perform experiments on the datasets from three years’ challenges.

• ISIC 2016 [13] contains two classes: benign and malignant (melanoma). There are 900

dermoscopic lesion images in JPEG format for training, and 379 images for testing.

The participants were ranked by average precision score.1

• ISIC 2017 [7] has three classes: melanoma, nevus, and seborrheic keratosis. Partici-

pants were asked to perform two independent binary classification tasks: melanoma

vs others, and seborrheic keratosis vs others. We do experiments on melanoma recog-

nition, which is the harder task. The data is split into three parts: 2000 images for

training, 150 from validating, and 600 for testing. The official metric is the area under

the receiver operating characteristic curve (AUC).2

• ISIC 2018 [6] extends the dataset further to seven classes. There are 10015 images for

training, 193 for validation, and 1512 for testing. The performance is evaluated by nor-

1The average precision can be computed using the function average_precision_score from scikit-learn
toolbox (https://scikit-learn.org).

2The AUC score can be computed using the function roc_auc_score from scikit-learn toolbox (https:
//scikit-learn.org).
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malized multi-class accuracy, which is the arithmetic mean of each class’s classification

accuracy.3

The statistic information of the training sets is shown in Fig. 3.1. Note that every dataset

is highly unbalanced.

Figure 3.1: The statistic information of three training sets.

3.1.2 Implementation Details

Data Preprocessing We preprocess the data by center-cropping the image to a squared

size with the length of each side equal to 0.8 ×min(Height,Width), and then resizing to

256× 256.

3The multi-class accuracy can be computed using the function recall_score from scikit-learn toolbox
(https://scikit-learn.org), with the average argument set to “macro”.
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Data Oversampling As was discussed in section 2.3, we use focal loss to tackle data

imbalance. Additionally, we perform data oversampling by duplicating samples from the

class with fewer instances.4

Network Training We implement our model using PyTorch [35]. The backbone network

is initialized with VGG-16 pre-trained on ImageNet, and the attention modules are initial-

ized using He’s initialization [16]. The whole network is trained end-to-end for 50 epochs

using stochastic gradient descent with momentum. The initial learning rate is 0.01 and is

decayed by 0.1 every 10 epochs. We apply run-time data augmentation (random cropping,

rotation, and flipping) via PyTorch’s transform modules. For the datasets with validation

set (ISIC 2017 and 2018), we do early-stopping and select the optimal model parameters

depending on the performance on the validation set.

3.2 Binary Classification

In this section we’ll discuss experimental results on ISIC 2016 and 2017. Both of them involve

binary classification tasks. The results shown in this section are from our publication [49].

Figure 3.2: The receiver operating characteristic (ROC) curves of different models on dataset
ISIC 2016 (left) and 2017 (right).

4For ISIC 2016 and 2017, we do file copy and save duplicated images on disk, preducing a “larger” dataset
than the original one. As for ISIC 2018, file copy results in a 5 times larger dataset stored on disk (about
50k images), and this means around 1k iterations per epoch during training with a batch-size of 32. To avoid
too much training burden, we do the trick of specifying a weighted sampler for the (un-duplicated) dataset.
Suppose some class c takes a proportion of p in the dataset, the sampling weight for this class would be 1/p.
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Figure 3.3: Visualization of attention maps for different models on ISIC 2017 test data.
The deeper layer (pool-4) exhibits more concentrated attention to valid regions than the
shallower layer (pool-3). The models with additional regularization (rows 4-7) produce more
refined and semantically meaningful attention maps.
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3.2.1 Ablation Study

First, we train our model without regularization, i.e., only Lfocal is used for training. We de-

note this model as AttnMel-CNN. We compare AttnMel-CNN with three baselines (VGG-16,

VGG-16-GAP, Mel-CNN ) to verify the effectiveness of attention. Then we add regulariza-

tion using different ROIs, yielding AttnMel-CNN-Lesion and AttnMel-CNN-Dermo. We also

apply background (the inverse of lesion segmentation) as a “wrong” ROI to demonstrate

how improper attention influence the performance. The quantitative results are summarized

in table 3.1 and 3.2. For a comprehensive view of the performance, we plot the ROC curves

for different models in Fig. 3.2. We’ll discuss the details of each model in the following

paragraphs.

Comparing with the original VGG The first baseline model is the original VGG

network. We modify the last classification layer to have 2 output nodes, and the rest of

the network parameters are initialized with ImageNet pre-training. We denote this baseline

VGG-16. Note that even though our backbone network is based on the VGG network

(Fig. 2.1), we remove the two dense layers and add our own attention modules. Since dense

layers take nearly 90% of the parameters in VGG-16, our network is much more lightweight

(around 100M fewer parameters). Referring to Table 3.1 (rows 4,7) and Table 3.2 (rows 6,9),

AttnMel-CNN achieves better performance despite the large degree of parameter reduction.

Comparison with the truncated VGG The poor performance of the original VGG-16

could be due to overfitting. For a fair comparison, we design another baseline, termed VGG-

16-GAP, by replacing the dense layers with global average pooling. Note that this is also

equivalent to our model without the two attention modules. Referring to Table 3.1 and 3.2,

VGG-16-GAP slightly outperforms the original VGG-16, but is surpassed by the proposed

AttnMel-CNN. This demonstrates that overfitting can be reduced by removing the dense

layers, but that further improvements come from the proposed architecture, which explicitly

leverages the intermediate features. The results also prove the hypothesis in section 2.1 that

due to the simple structure of skin lesions, features from shallow layers can also contain

import discriminative information.
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AP AUC Lesion Interp Ensemble

#1 Lequan et al. [52] 0.637 0.804 3 7 7

#2 Codella et al. [8] 0.596 0.808 7 7 3

#3 Yu et al. [53, 54] 0.685 0.852 7 7 3

#4 VGG-16 0.602 0.806 7 7 7

#5 VGG-16-GAP 0.635 0.815 7 3 7

#6 Mel-CNN 0.664 0.844 7 7 7

#7 AttnMel-CNN 0.693 0.852 7 3 7

Table 3.1: Quantitative results on ISIC 2016 test set. The first ranking in terms of AP or
AUC is highlighted in bold, and the second ranking is indicated in italics. The proposed
method (AttnMel-CNN ) achieves state-of-the-art without using an ensemble of
models or ground truth segmentations.
Notations: AP: average precision; AUC : the area under the ROC curve; Lesion: requires
lesion segmentation or not; Interp: interpretable or not; Ensemble: ensemble method or not.

Does attention help? After confirming the usefulness of exploiting intermediate fea-

tures, one may ask whether it helps to assign attention maps to these features. In order

to validate the effectiveness of attention modules themselves, we compute global average

pooling directly on pool-3 and pool-4 instead of their attention versions. We denote this

baseline Mel-CNN. According to Table 3.1 and 3.2, this baseline yields worse performance

than AttnMel-CNN. This is an expected result because shallow features are not well com-

pressed and abstracted, and attention maps help rule out irrelevant information.

How does the regularization influence the model? We re-train the network using

the loss proposed in Eq. 2.7 with three different reference maps (Ā): (1) AttnMel-CNN-

Dermo uses the union of all dermoscopic features5; (2) AttnMel-CNN-Lesion uses the whole

lesion segmentation map; and (3) AttnMel-CNN-Bkg uses image background (the inverse

of the lesion segmentation map). Table 3.2 shows that encouraging attention to lesion or

5For ISIC 2017, we convert the superpixel labels to binary pixel labels in the same way as Kawahara et
al. [24].
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dermoscopic features yields better performance, while improper attention (AttnMel-CNN-

Bkg) harms the performance.

AP AUC Lesion Dermo Interp Ensemble External

#1 Winner 1 [29] – 0.868 7 7 7 3 3

#2 Winner 2 [9] – 0.856 3 3 7 7 3

#3 Winner 3 [31] – 0.874 7 7 7 3 3

#4 Harangi et al. [14] – 0.836 7 7 7 3 7

#5 Mahbod et al. [28] – 0.873 7 7 7 3 3

#6 VGG-16 0.600 0.824 7 7 7 7 7

#7 VGG-16-GAP 0.627 0.834 7 7 3 7 7

#8 Mel-CNN 0.653 0.854 7 7 7 7 7

#9 AttnMel-CNN 0.655 0.872 7 7 3 7 7

#10 AttnMel-CNN-Dermo 0.665 0.864 7 3 3 7 7

#11 AttnMel-CNN-Lesion 0.672 0.883 3 7 3 7 7

#12 AttnMel-CNN-Bkg 0.647 0.849 3 7 3 7 7

Table 3.2: Quantitative results on the ISIC 2017 test set. The highest rankings in terms
of AP or AUC are highlighted in bold, and the second ranking is indicated in italics.
The proposed method with attention maps achieves comparable performance
without external data, model ensembles, or any ground truth ROIs (AttnMel-
CNN ). When ROIs are available, the performance is further improved. Notation: AP:
average precision; AUC : the area under the ROC curve; Lesion: use lesion segmentation
or not; Dermo: use dermoscopic features or not; Interp: interpretable or not; Ensemble:
ensemble method or not; External: use external training data or not.

3.2.2 Benchmarking

We summarize previous work in Table 3.1 rows 1-3 and Table 3.2 rows 1-5. Comparison

with Yang et al. [50] and Chen et al. [4] is not feasible as separate results for melanoma

classification are not reported. The advantages of our method are:

• Our method yields state-of-the-art performance for melanoma classification even with-

out attention map regularization (AttnMel-CNN ), and produces further performance

improvements when reference ROIs are available (AttnMel-CNN-Lesion and AttnMel-

CNN-Dermo). Additionally, we achieve state-of-the-art performance without any ex-

ternal training data.
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• Our method relies on a single model, avoiding complex model ensembles.

• Compared with other methods utilizing segmentation maps [52, 50, 4, 9], our method

is more robust and flexible in that: (1) The regularization terms can be plugged out

when pixel-level annotations are not available, and our model can still work well.

While these comparison methods must have segmentation masks for training. (2) The

competing works can only utilize lesion segmentation, but our regularization method

can efficiently use sparse maps such as dermoscopic features(AttnMel-CNN-Dermo).

3.2.3 Visual Interpretability

In order to show whether better attention correlates with higher performance, we evaluate

the learned attention maps both qualitatively and quantitatively.

Qualitative Analysis We visualize the learned attention maps ofAttnMel-CNN,AttnMel-

CNN-Dermo andAttnMel-CNN-Lesion on the ISIC 2017 test data by upsamplingA (Eq. 2.2)

to align with the input image. The results are shown in Fig. 3.3. When comparing rows 2

and 3, we observe that the shallower layer (pool-3) tends to focus on more general and dif-

fused areas, while the deeper layer (pool-4) is more concentrated, focusing on the lesion and

avoiding irrelevant objects. Furthermore, rows 4-7 demonstrate that the models with addi-

tional regularization pay attention to more semantically meaningful regions, which accounts

for the performance improvement illustrated in Table 3.2.

Quantitative Analysis We quantify the “quality" of the learned attention map by com-

puting its overlap with the ground truth lesion segmentation. First, we re-normalize each

attention map to
[
0, 1
]
and binarize it using a threshold of 0.5. Then we compute the Jac-

card index with respect to the ground truth lesion segmentation. We also calculate the

class activation map (CAM) [57] from VGG-16-GAP and follow the same procedure as

above to compute the Jaccard index value. The results reported in Table 3.3 lead to several

conclusions: (1) The proposed learnable attention module highlights the relevant image re-

gions better than the post-processing-based attention (CAM). (2) The attention map of the

deeper layer (pool-4) yields a higher Jaccard index value, demonstrating that the deeper
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layer learns more discriminative features than the shallower layer. (3) The regularization

encourages the attention maps to concentrate more on relevant ROIs.

AttnMel-CNN AttnMel-CNN-Dermo AttnMel-CNN-Lesion VGG-16-GAP

pool3 pool4 pool3 pool4 pool3 pool4 CAM

0.3105 0.3186 0.3621 0.4767 0.5533 0.6560 0.2825

Table 3.3: Jaccard index of (binarized) attention maps and class activation maps with
respect to the ground truth lesion segmentations.

3.3 Multi-class Classification

This thesis extends our paper [49] with experiments on ISIC 2018. The test set for ISIC 2018

is kept private, and the online platform is restricted to a limited number of submissions per

week. To perform enough experiments for ablation study, we do 5-fold cross-validation using

the training set and report the average value of the five folds for each model. What’s more,

the data of lesion segmentation and dermoscopic feature detection tasks don’t overlap with

the classification task, which means attention map regularization (AttnMel-CNN-Dermo

and AttnMel-CNN-Lesion) is not feasible. Despite this, we train a simple U-Net [36] with

the data provided in the lesion segmentation task (only 2594 images) and use it to generate

masks of the classification training set. Even though these masks are far from perfect, we

show that our model can still take advantage of them.

3.3.1 Ablation Study

Similar to section 3.2, we train various models including VGG-16, VGG-16-GAP, Mel-CNN

and AttnMel-CNN. The results are shown in table 3.4. Again, the model with attention yields

the best performance. Other characteristics that are observed from the results include:

• The classification difficulty varies for different classes. There is around 40% gap in

accuracy between the easiest class (VASC) and the most difficult one (DF).
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• The least frequent class is not necessary the hardest one to recognize. For example,

though vascular lesion (VASC) takes only 1.4% of the dataset (Fig. 3.1), it proves to

be the easiest class, with almost every model achieving 100% accuracy.

MEL NV BCC AKIEC BKL DF VASC AVG

#1 VGG-16 0.829 0.848 0.902 0.750 0.782 0.545 1.0 0.808

#2 VGG-16-GAP 0.811 0.870 0.863 0.813 0.845 0.545 1.0 0.821

#3 Mel-CNN 0.811 0.861 0.902 0.906 0.827 0.545 0.929 0.826

#4 AttnMel-CNN 0.784 0.896 0.941 0.813 0.818 0.636 1.0 0.841

#5 AttnMel-CNN-Lesion∗ 0.801 0.896 0.922 0.750 0.873 0.727 1.0 0.853

Table 3.4: Quantitative results on the ISIC 2018 test set. Accuracy on each class (recall) and
the average recall are recorded. The highest rankings are highlighted in bold. Notation:
MEL: melanoma; NV : melanocytic nevus; BCC : basal cell carcinoma; AKIEC : actinic
keratosis / Bowen’s disease (intraepithelial carcinoma); BKL: benign keratosis (solar lentigo
/ seborrheic keratosis / lichen planus-like keratosis); DF : dermatofibroma; VASC : vascular
lesion.

3.3.2 Attention Regularization with Imperfect Reference

Though we don’t have pixel-level labels to perform the same experiments in section 3.2,

we managed to “fake” lesion segmentation “groundtruth” by ourselves. We use the training

data from ISIC 2018 task 1 (lesion boundary segmentation) to train a simple U-Net model.

Then we use the U-Net to generate segmentation maps for the classification training set.

These automatically generated prediction maps are treated as ROI reference maps (Ā in

Eq. 2.6) to train the model AttnMel-CNN-Lesion∗ (the star symbol indicates that “fake”

lesion segmentation is used).

Since the size of the segmentation training set is much smaller than the classification

dataset (2594 vs. 10015 images), the generated ROI maps are of low quality in terms of

segmentation accuracy, though they roughly indicate the region of the lesion (Fig 3.4).

According to the results shown in table 3.4, the proposed model takes advantage of the ROI

maps despite that they are imperfect, leading to better overall classification performance.

We visualize the attention maps in Fig. 3.5, from which we can tell that regularization yields

refined attention.
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Figure 3.4: The generated ROI masks roughly highlight the lesion region but are of low
quality.

3.3.3 Summary

In general, the experiments on multi-class dataset agree with the results in section 3.2.

• The plain VGG-16 has the worst performance due to too many parameters and over-

fitting, and reducing parameters do help with the performance (VGG-16-GAP)

• Explicitly extracting some intermediate features is effective (Mel-CNN ), but interme-

diate features may contain too much raw information, and attention helps via ruling

out irrelevant regions (AttnMel-CNN ).

• Attention regularization further boosts the performance, as well as refines the learned

attention maps (AttnMel-CNN-Lesion∗).

What’s more, we show that our model is well tolerant of imperfect ROI maps for atten-

tion regularization. As long as the maps roughly indicate the target region, the model can

capture enough useful information to learn high-quality attention maps.
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Figure 3.5: Visualization of attention maps for different models on ISIC 2018. Even though
AttnMel-CNN-Lesion∗ is trained with imperfect ROI maps, the attention maps are refined
compared with AttnMel-CNN.
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Chapter 4

Conclusion

This thesis proposed an attention-based deep network with attention regularization for skin

cancer classification. Attention modules not only improve classification performance but

also produce interpretable results. Furthermore, our novel attention regularization terms

were shown effective, robust and flexible. They can be easily plugged into the loss function

whenever ROI reference maps are available. The ROI maps do not necessarily need to

indicate the whole lesion area, nor need they be perfect annotations. As long as ROIs give

hints on the dedicated attention region, the attention regularization can take advantage of

them.

Our work has witnessed extensions since published. For example, Zhao et al. [56] used

estimated segmentation masks as attention priors for predicting retinopathy, wherein auto-

matic vessel segmentation guided attention resulted in improved classification accuracy.
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Chapter 5

Future Work

5.1 Further Exploration of Attention

In this thesis, ablation study was performed to show the performance improvement when

the VGG-16 network gradually “evolves” into the proposed model. There is another series

of ablation studies that can be done to explore the effects of attention, especially attention

regularization. Specifically, we can set four “dimensions” for the “model space”:

• Quantity: the proportion of the training set of images with attention prior, i.e., whether

all or a subset of training images have pixel-level annotations as attention prior.

• Quality: the quality of the attention prior, i.e., whether it’s annotated by an expert,

a novice, or automatically generated, and the level of detail provided by the segmen-

tation mask, e.g. precise delineation, approximating polygon, or a bounding box.

• Type: the type of the attention prior, i.e., is it lesion segmentation, dermoscopic

features, or others.

• Architecture: the number of intermediate layers to apply attention and which specific

layers to apply.

Some of the four “dimensions” are discrete. For example, the type of attention prior

can only be one of several options, and there are finite options in terms of which layer to

apply attention. On the other hand, quantity and quality are continuous dimensions. We

can explore the influence when we gradually increase the fraction of images with attention
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prior. It is also interesting to start from very rough attention prior (e.g., rectangles or circles

around the lesions) and refine it step by step to most accurate human annotations.

In this thesis, we applied two types of priors to ISIC2017 (lesion segmentation and

dermoscopic features), and used generated lesion segmentation masks as prior for ISIC2018.

Nevertheless, a complete exploration over the above dimensions are to be done in the future.

5.2 Data bias

ISIC datasets contain some “divergent” samples where there are rulers or stickers in the

images. There is an question to be answered: is the dataset biased w.r.t those visual outliers?

For example, is it the case that all or most of the images with stickers belong to one class,

so that the classifier actually learns the bias towards stickers?

Further, if the answer to the above question were “yes”, another question would occur:

does attention or attention prior reduce such bias? Manual examination of datasets is needed

to answer these questions.

5.3 User Study

Since one of the most important products of attention is visual interpretability, one mean-

ingful further work would be performing a user study to explore the relation between the

attention maps and the regions of the image that human experts actually look at when

making the diagnosis.
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