
Yan
-Y

iqi
-B

ac
he

lor
-T

he
sis

NORTHWESTERN POLYTECHNICAL UNIVERSITY

A multi-scale CNN for single image
spectral super-resolution

by
Yiqi Yan

A thesis submitted in partial fulfillment for the
Bachelor of Engineering

in the
School of Computer Science

Department of Computer Information and Engineering

May 2018

http://www.nwpu.edu.cn/
https://saoyan.github.io/
http://jsj.nwpu.edu.cn/
Department or School Web Site URL Here (include http://)


Yan
-Y

iqi
-B

ac
he

lor
-T

he
sis

Declaration of Authorship

I, Yiqi Yan, declare that this thesis titled, ‘THESIS TITLE’ and the work presented in
it are my own. I confirm that:

■ This work was done wholly or mainly while in candidature for a research degree
at this University.

■ Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

■ Where I have consulted the published work of others, this is always clearly at-
tributed.

■ Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

■ Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i



Yan
-Y

iqi
-B

ac
he

lor
-T

he
sis

“I can do all things.”

Stephen Curry



Yan
-Y

iqi
-B

ac
he

lor
-T

he
sis

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Abstract
School of Computer Science

Department of Computer Information and Engineering

Bachelor of Engineering

by Yiqi Yan

Hyperspectral imaging enhances the solution of many visual problems but suffers from
low-resolution image data. Due to the trade-off between spectral and spatial resolution,
it is hard to directly get high spectral-spatial resolution data. In addition, building a
high-resolution hyperspectral imaging system can be really costly. Therefore, computa-
tional super-resolution methods mean a lot in practice.

This thesis focuses on one type of super-resolution method, spectral super-resolution.
We aim to produce a high-resolution hyperspectral image from a signal RGB obser-
vation. Mapping three discrete intensity values to a continuous spectrum is highly
under-constrained. Fortunately, the inherent correlation of natural images serves as a
nice prior to help solve this problem. In fact, for each candidate pixel, there often exist
locally and non-locally similar pixels. In this thesis, we propose a novel multi-scale con-
volutional neural network to explicitly map the input RGB image into a hyperspectral
image. Through symmetrically downsampling and upsampling the intermediate feature
maps in a cascading paradigm, the local and non-local image information can be jointly
encoded for spectral representation, ultimately improving the spectral reconstruction
accuracy.

We do experiments on a large hyperspectral database and prove that our method achieves
state-of-the-art performance with regards to both pixel-level accuracy and spectral sim-
ilarity. What’s more, we experimentally show that our method is much more robust in
that it is less sensitive to hyper-parameters compared to previous methods.

Keywords: Hyperspectral imaging. Spectral super-resolution. Multi-scale convolu-
tional neural networks.
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Chapter 1

Introduction

Hyperspectral imaging encodes the reflectance of the scene from dozens or hundreds
of bands with a narrow wavelength interval (e.g. 10nm) into a hyperspectral image.
Different from conventional images, each pixel in the hyperspectral image contains a
continuous spectrum, thus allowing the acquisition of abundant spectral information.
Since spectral responses reflect the characteristics of different kinds of materials at each
observation point, hyperspectral images have been widely exploited to facilitate various
applications in computer vision community, such as visual tracking [2], image segmenta-
tion [3], face recognition [4], document analysis [5, 6], scene classification [7, 8], anomaly
detection [9, 10], and other general remote sensing tasks [11–14].

The ability to achieve such richness of information, however, comes with an unavoidable
cost. There are two main challenges that limit the application of hyperspectral images.
The first is the trade-off between spatial and spectral resolution. When shotting a
hyperspectral image, a fewer number of photons are captured by each detector due to
the narrower width of the spectral bands. In order to maintain a reasonable signal-to-
noise ratio (SNR), the instantaneous field of view (IFOV) needs to be increased [15, 16].
This makes it really hard to get “fully high-resolution” image. The second disadvantage
is the high cost of hyperspectral devices. This results from the requirement of recording
a 3-dimensional data. In order to do this, some scanning operations must be performed
spatially or spectrally, and careful elaboration of imaging devices is required. To address
these two problems, many computational methods have been proposed, typically known
as super-resolution.

This chapter will give a brief introduction of hyperspectral imaging technique, pointing
out its pros and cons, followed by a review of existing super-resolution methods. Then
we will introduce three public hyperspectral datasets. Finally, we will summarize our
contributions.

1
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1.1 Hyperspectral Imaging Techniques

Conventional imaging sensors produce images within several relatively broad wavelength.
For example, RGB imaging sensors capture reflectance within three wavelength bands in
the range of the visible light spectrum. On the contrary, hyperspectral sensors have the
ability to collect data simultaneously in dozens or hundreds of narrow, adjacent spectral
bands, as illustrated in Figure 1.1.

Figure 1.1: Illustration of RGB and hyperspectral imaging2

The acquired hyperspectral image is a 3-dimensional data cube, with spatial dimen-
sion x, y, and spectral dimension λ. In order to sample the hyperspectral cube from
a continuous signal space, certain kind of scanning is performed along some specific
dimensions. Technically speaking, there are four ways: spatial scanning, spectral scan-
ning, non-scanning (snapshot imaging) and spatio-spectral scanning. Their difference is
shown in Figure 1.2.

Spatial scanning In spatial scanning, a slit aperture is moved across a scene (along-
side y direction) to capture image sections sequentially. At each scanning point, a
2-dimensional output is produced, representing a full slit spectrum

(
x, λ

)
. This kind

of device is a line-scan system, as each scanning position is a line-shaped area on the(
x, y

)
plane. Therefore, stable mounts are required for “reconstructing” the image. The

advantage of this scanning strategy is that it produces high (spatial) resolution, but it
also gives rise to relatively high motion artifacts (caused by the scanning operation).

Spectral scanning spectral scanning is somewhat similar to spatial scanning, in that
they both produce multiple 2-dimensional outputs to “reconstruct” the whole image.
The only difference is that in spectral scanning each output represents a monochromatic
spatial map

(
x, y

)
of the scene. This is achieved by inserting filters to select “ color”

(different wavelength bands). Spectral scanning produces high (spectral) resolution, and
also results in motion artifacts.

2http://feilab.org/Research/Research_HSI.htm

http://feilab.org/Research/Research_HSI.htm
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Non-scanning This method is also called snapshot imaging, as it actually needs
no scanning operation. All spatial and spectral attributes are captured in one single
frame. The most prominent advantage of snapshot imaging is high throughput and
quick acquisition. Since no scanning is needed, motion artifacts no longer exist. These
benefits come at the cost of high computational efforts, and the manufacturing costs
make it a challenge to get high-resolution images.

Spatio-spectral scanning Spatiospectral scanning it a combined version of spatial
and spectral scanning. In this case, each 2-dimensional output is a “wavelength-coded”
spatial map of the scene, where λ follows λ = λ

(
y
)
. This technique takes the advantages

of spatial and spectral scanning and reduces their disadvantages to some degree.

No matter which imaging technique is utilized, the contradiction of spatial and spectral
resolution always occur in practice. We can easily acquire an RGB image with very
high spatial resolution, but this lacks rich spectral information. On the contrary, when
we gather rich spectral information in hyperspectral images, the spatial resolution must
be reduced. Due to this, reconstructing the reduced dimension by computation meth-
ods, typically known as super-resolution, is essential in practice. According to which
dimension needs to be restored, there are two categories of super-resolution methods for
hyperspectral images: spatial super-resolution and spectral super-resolution. We will
discuss this in the next section.

Figure 1.2: Four types of scanning methods for hyperspectral imaging
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1.2 Existing Super-resolution Methods

1.2.1 Spatial Super-resolution

Fusion based super-resolution This category of methods fuse a high-resolution
convention image (e.g., panchromatic image, RGB image, or multispectral image) and
a low-resolution hyperspectral image to produce a high-resolution hyperspectral image
[17, 18]. Particularly, the fusion of panchromatic and hyperspectral images are known
as hyperspectral pansharpening. Generally speaking, there are three classes of pan-
sharpening methods: component substitution (CS), multiresolution analysis (MRA),
and Bayesian methods. The CS approach relies on the substitution of a component
of the hyperspectral image by the panchromatic image. The CS approach includes al-
gorithms such as intensity-hue-saturation [19–21], principal component analysis [22–24]
and Gram-Schmidt [25]. The MRA approach is based on the injection of spatial
details into the hyperspectral data. The spatial details can be extracted through a mul-
tiresolution decomposition of the panchromatic image. There are several modalities of
MRA: decimated wavelet transform [26], undecimated wavelet transform [27], Laplacian
pyramid [28] and nonseparable transforms [29, 30]. The Bayesian approach relies on
the use of posterior distribution of the full resolution target image given the observed
hyperspectral and panchromatic images [31–33]. Hyperspectral pansharpening can be
easily extended from panchromatic images to RGB/multispectral images by fusing each
band separately using the conventional pansharpening methods and then synthesizing
all bands to get high-resolution hyperspectral images [34–37].

Single image super-resolution Fusion based super-resolution methods require the
simultaneous acquisition of two well-registered observations, which is always infeasible in
practice. In recent years, some methods take efforts to directly increases the spatial reso-
lution of a hyperspectral image. [38] used convolutional neural networks to encode both
spatial context and spectral correlation for hyperspectral super-resolution. Furthermore,
[39] proposed a three dimensional fully convolutional neural network (3D-FCNN) to bet-
ter exploit the spectral correlation of neighboring bands, such that spectral distortion
when directly applying traditional CNN algorithms in band-wise manners is alleviated.
In addition, a sensor-specific mode is designed for the proposed 3D-FCNN such that none
of the samples from the target scene are required for training, and fine-tuning by a small
number of training samples from the target scene can further improve the performance
of such a sensor-specific method. In [40, 41], a spectral difference convolutional neural
network (SDCNN) was proposed to enhance spatial resolution. Spatial constraint strat-
egy was utilized to correcting the spatial error while preserving the spectral information.
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In [42], the author took the advantage of residual learning for spatial super-resolution.
What’s more, an extra term that calculates the spectral angle was introduced to the loss
function.

1.2.2 Spectral Super-resolution

Compared to spatial super-resolution, relatively rare work has been done on spectral
super-resolution. Here we briefly review existing methods.

Early imaging methods Early methods attempted to acquire hyperspectral images
using RGB sensors under certain controlled circumstances. For example, [43] took the
advantage of active lighting by using spectral filters before the illumination. This is only
feasible under laboratory conditions. Similarly, [44, 45] were also limited to capturing
RGB images under controlled lighting. [46] proposed an algorithm to combine multiple
RGB images of the same scene. The idea was based on different spectral sensitivities of
different camera sensors. However, this imaging system was designed using dedicated
devices that needed to be carefully deposited.

Statistic based methods This line of research mainly focus on exploiting the in-
herent statistical distribution of the latent hyperspectral image as priors to guide the
super-resolution. Most of these methods involve building overcomplete dictionaries and
learning sparse coding coefficients to linearly combine the dictionary atoms. For exam-
ple, in [47], Arad et al. leveraged image priors to build a dictionary using K-SVD [48].
At test time, orthogonal matching pursuit [49] was used to compute a sparse represen-
tation of the input RGB image. [50] proposed a new method inspired by A+ [51–53],
where sparse coefficients are computed by explicitly solving a sparse least square prob-
lem. These methods directly exploit the whole image to build image prior, ignoring local
and non-local structure information. What’s more, since the image prior is often hand-
crafted or heuristically designed with shallow structure, these methods fail to generalize
well in practice.

Learning based methods These methods directly learn a certain mapping function
from the RGB image to a corresponding hyperspectral image. For example, [54] pro-
posed a training based method using a radial basis function network. The input data
was pre-processed with a white balancing function to alleviate the influence of different
illumination. The total reconstruction accuracy is affected by the performance of this
pre-processing stage. Recently, witnessing the great success of deep learning in many
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other ill-posed inverse problems such as image denoising [55] and single image super-
resolution [56], it is natural to consider using deep networks (especially convolutional
neural networks) for spectral super-resolution. In [1], Galliani et al. exploited a vari-
ant of fully convolutional DenseNets (FC-DenseNets [57]) for spectral super-resolution.
However, this method is sensitive to the hyper-parameters and its performance can still
be further improved.

1.3 Hyperspectral Image Datasets

Large and high-quality hyperspectral image databases are essential for developing and
testing computational methods. CAVE [58] and HARVARD [59] were commonly used in
previous publications, while NTIRE2018 [60] is a recently released dataset. Their basic
information is shown in Table 1.1.

CAVE CAVE dataset consists of 32 images with a spatial resolution of 512 × 512

and 31 spectral bands between 400 and 700 nm. The content of CAVE is a collection
of diverse objects, including faces, fruits, paint, and textiles.

HARVARD HARVARD contains 50 images of indoor and outdoor scenes, captured
using a commercial hyperspectral camera (Nuance FX). The spatial resolution is 1024×
1024.

NTIRE2018 This dataset is extended from the ICVL dataset [47]. The ICVL dataset
includes 203 images captured using Specim PS Kappa DX4 hyperspectral camera. Each
image is of size 1392× 1300 in spatial resolution and contains 519 spectral bands in the
range of 400 ∼ 1000nm. In experiments, 31 successive bands ranging from 400 ∼ 700nm

with 10nm interval are extracted from each image for evaluation. In the NTIRE2018
challenge, this dataset is further extended by supplementing 53 extra images of the same
spatial and spectral resolution. As a result, 256 high-resolution hyperspectral images
are collected as the training data. In addition, another 5 hyperspectral images are
further introduced as the test set. In the NTIRE2018 dataset, the corresponding RGB
rendition is also provided for each image. Since all other databases pale in terms of the
amounts and resolution of image data, all experiments in this thesis are performed on
NTIRE2018.
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Table 1.1: Basic information about three different hyperspectral image databases

number of images size bands spectral band
NTIRE2018 256 training + 5 test 1392× 1300 31 400 ∼ 700nm

CAVE 32 512× 512 31 400 ∼ 700nm
HARVARD 50 1024× 1024 31 420 ∼ 720nm

1.4 Our Contribution

In this paper, we aim to perform single image spectral super-resolution. It is challenging
to accurately reconstruct a hyperspectral image from a single RGB observation, since
mapping three discrete intensity values to a continuous spectrum is a highly ill-posed
inverse problem (much information is lost when downsampling the latent spectrum). To
address this problem, we propose to learn a complicated non-linear mapping function
for spectral resolution with deep convolution neural networks. It has been shown that
for a candidate pixel, there often exist abundant locally and no-locally similar pixels
(i.e. exhibiting similar spectra) in the spatial domain. As a result, the color vectors(
r, g, b

)
corresponding to those similar pixels can be viewed as a group of downsampled

observations of the latent spectra for the candidate pixel. Therefore, accurate spectrum
reconstruction requires to explicit considering both the local and non-local information
from the input RGB image. To this end, we develop a novel multi-scale convolution
neural network. Our method jointly encodes the local and non-local image information
through symmetrically downsampling and upsampling the intermediate feature maps in a
cascading paradigm, enhancing the spectral reconstruction accuracy. We experimentally
show that the proposed method can be easily trained in an end-to-end scheme and beat
several state-of-the-art methods on a large hyperspectral image dataset with respect to
various evaluation metrics.

Our contributions are twofold:

• We design a novel CNN architecture for spectral reconstruction. Our method is
able to encode both local and non-local information simultaneously.

• We perform extensive experiments on a large hyperspectral dataset and prove that
our method achieves state-of-the-art performance.
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Chapter 2

Background Theory

In this chapter, necessary background knowledge is described. To begin with, we briefly
summarize interpolation methods, which will serve as the most primitive baseline. In
the rest of this chapter, we will focus on deep learning, especially convolutional neural
networks(CNNs). First, basic concepts of CNNs are reviewed. Second, we revisit three
classic architectures that are most relevant to this thesis. Then we summarize some
commonly used techniques against overfitting, followed by a quick review of hardware
and software implementation of deep learning.

2.1 Interpolation

Interpolation is a method of constructing new data points within a discrete set of known
data points. If the known data points are some “downsampled signal”, then interpolation
serves as an upsampling method by reconstructing original data points. Interpolation
algorithms often assume that the observed signal is a direct downsampled version of the
original signal. This limits its application in more complicated cases. In this thesis,
our goal is to perform spectral reconstruction, so we only focus on interpolation for
1-dimensional signals (Figure 2.1).

Nearest neighbor interpolation This method is very straightforward, directly set-
ting the value of an interpolated point to the value of the nearest existing data point.
The interpolated signal is “step-sized” (Figure 2.1 left). Nearest neighbor interpolation
tends to increase noise and jaggies at boundaries. Clearly, it lacks the ability to recover
rich spectral information.

8
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Linear interpolation Given two data points, (xa, ya) and (xb, yb), the interpolant
at (x, y) is given by the following equation.

y − ya
x− xa

=
yb − ya
xb − xa

(2.1)

This equation states that the slope of the line between (xa, ya) and (x, y) is the same as
the slope of the line between (xa, ya) and (xb, yb). In other words, linear interpolation
just places each interpolated point on the straight line between two neighboring data
points (Figure 2.1 middle).

Figure 2.1: Comparison of three interpolation methods. Black dots represents the
interpolated point. Red/yellow/green/blue dots correspond to known data points.

Spline interpolation Given a set of data points, polynomial interpolation tries to
find a polynomial function that passes through the points of the dataset. The poly-
nomial is of degree at most n. When n = 3, we get cubic interpolation (Figure 2.1
right). There are various methods to find such a polynomial, among which spline in-
terpolation is commonly used. In spline interpolation, a polynomial of relatively low
degree is assigned between each pair of data points. In the meantime, the boundaries of
polynomials are continuously differentiable. Spline interpolation is often preferred over
regular polynomial interpolation because the interpolation error can be made small even
when using low degree polynomials for the spline.

2.2 Convolutional Neural Networks

In the late 1950s, Frank Rosenblatt proposed the perceptron algorithm inspired by
the mechanism of biological neurons [61]. This algorithm was later extended to multi-
layer neural networks (or multi-layer perceptrons, MLPs). Generally speaking, each
artificial neuron takes an input, performs a linear transformation followed by a non-
linear activation function.

y = σ
(
W Tx+ b

)
(2.2)
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For the primitive perceptron model (Figure 2.2 a), there is only one such neuron, and
the activation function is a unit step function. This activation function states that the
neuron should be “activated” according to a specific threshold. In MLPs (Figure 2.2
b), however, each layer may contain more than one neurons, and new kinds of activa-
tion functions are exploited (e.g. sigmoid function). The training of these models was
infeasible until the invention of backpropagation [62] and gradient descent.

(a) Perceptron (with 3 input nodes and 1 bias term)

(b) 3-layer multi-layer perceptrons (MLPs)

Figure 2.2: The perceptron models

Conventional neural network models don’t scale well on image data. The image data
is multidimensional and partially correlated. On the one hand, MLPs result in an
exploding number of parameters when handling high dimensional data. On the other
hand, ignoring spatial correlation means losing lots of structural information. In [63],
a novel kind of model called convolutional neural networks (CNNs) was proposed to
analyze image data. There are two main differences between CNNs and MLPs.

• In CNNs the weights are shared. In each layer, convolutional operations are per-
formed on the input, and the kernels (or filters) are locally connected, i.e. different
parts of the inputs “share” the same set of parameters. The advantages of weight
sharing are obvious. First, it largely reduces the number of parameters, making
it possible to build deeper networks. Second, it utilizes the inner correlation of
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image data and maintains structural information. An example of convolutional
operation is shown in Figure 2.3 a.

• Besides convolutional operations, another important characteristic of CNNs is the
incorporation of pooling layers. Its function is to progressively reduce the spatial
size of the hidden features and reduce computation in the network. It can also
induce a certain degree of rotation and shift invariant. There are two kinds of pool-
ing operations, max-pooling and average-pooling. The former is most commonly
used. An example of max-pooling is shown in Figure 2.3 b.

(a) Convolutional Operation

(b) Max-pooling Operation

Figure 2.3: Basic building blocks of CNNs

Over the past few years, several classic CNN architectures have been proposed, including
LeNet [63], AlexNet [64], VGGNet [65], ResNet [66, 67], DenseNet [68], etc. The last
two are most relevant to the models used in this thesis. In the next section, we will give
a brief introduction of ResNet and DenseNet.
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2.3 ResNet and DenseNet Architecture

Deep Residual Network (ResNet) was the winner of ImageNet Classification Chal-
lenge in 2015. Instead of directly learning some “mapping functions”, the author refor-
mulated the layers as explicitly learning residual functions with reference to the inputs.
Inducing these “residual blocks” with skip connections (Figure 2.4 a) makes it easier to
optimize much deeper CNNs than before (as deep as hundreds of layers).

Densely connected convolutional networks (DenseNets) use dense connections
rather than “sparse” skip layers. In one dense block (Figure 2.4 b), the input of each
layer is the combination of the outputs from every early layer. Unlike ResNet, DenseNet
utilizes concatenation operations instead of element-wise additions to combine features
from different layers. The advantages of DenseNet includes the alleviation of vanishing-
gradient, efficient feature reuse, and significant parameter reduction.

(a) Residual block: the building block of ResNet

(b) Dense block: the building block of DenseNet

Figure 2.4: Residual block and dense block
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2.4 Reducing Overfitting

Overfitting is a critical challenge in all kinds of deep learning methods. This problem
mainly results from limited amounts of training data. Besides gathering more data,
there are some nice techniques to reduce overfitting and better train deep networks.

Data augmentation For low-level vision tasks such as image denoising and super-
resolution, it is common to train a model with sub-images (or “patches”) extracted from
the original data. In this way, we can get multiple times as many as training samples
without gathering new data. In addition, other augmentation methods such as resizing,
rotating, and adding noises are often used.

Weight penalty This is also known as regularization. By adding a term in loss
function with respect to weights, parameters whose values go beyond a reasonable range
are heavily penalized. Weight penalty prefers “diffuse weights”, encouraging the network
to use all of its inputs a little rather than some of its inputs a lot.

Dropout Overfitting occurs due to too many learnable parameters compared to rel-
atively limited data. Dropout [69] means to randomly deactivate a fraction of neurons
when training a deep model. This is somewhat equivalent to adding some noise to each
hidden layer’s activations.

Batch normalization Batch normalization [70] works by normalizing the output of
a previous activation layer before passing it to the next stage. It reduces the amount by
what the activation of hidden layers shift around (“covariance shift”).

2.5 Hardware and Software Implementation

Nowadays, GPU acceleration with the support of CUDA software makes training deep
learning models more and more efficient. What’s more, it has been a trend for large
group/companies to turn their deep learning frameworks into open source projects. Im-
plementing and validating a new model has been a lot more straightforward. The most
popular deep learning frameworks are Tensorflow [71] and PyTorch [72], supported by
Google and Facebook respectively.

In this thesis, we use PyTorch for its flexibility to build dynamic computational graphs.
As for the hardware platform, we have access to eight GTX 1080 Ti GPUs.
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Chapter 3

The Proposed and Comparison
Methods

This chapter includes detailed information about the comparision methods in this thesis:
the sparse coding method in [47] (Arad et al.), A+ [50], and the deep learning method in
[1] (Galliani et al.). Following this, we describe the proposed multi-scale convolutional
neural network.

3.1 Comparison Methods

3.1.1 Sparse Coding Based Methods

Arad et al. and A+ [47, 50] are both based on dictionary learning and sparse coding.
Their diagrams are shown in Figure 3.1.

Arad et al. At the training stage, an overcomplete dictionary with m atoms is built
from a collection of hyperspectral images (training data) using K-SVD [48]. These atoms
lie in the space of high spectral resolution (HSR).

DH =
{
h1,h2, ...,hm

}
(3.1)

Since the spectral response function (i.e. the projection matrix from the hyperspectral
image to the corresponding RGB image) is assumed to be perfectly known, the hyper-
spectral dictionary can be projected to low spectral resolution (LSR) space.

14
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(a) Arad et al. (b) A+

Figure 3.1: Diagrams of sparse coding based methods

DL =
{
l1, l2, ..., lm

}
(3.2)

When it comes to reconstruction phase, the first step is to linearly decompose each RGB
pixel pl =

(
r, g, b

)
over DL via orthogonal matching pursuit (OMP [49]), i.e. to find a

weight vector w such that

DL ·w = pl (3.3)

Having computed the decomposition coefficients w, the corresponding hyperspectral
pixel can be reconstructed.

ph = DH ·w (3.4)

A+ algorithm A+ [51–53] was originally proposed for single image super-resolution.
[50] extends it to spectral super-resolution and keeps the name “A+”. Similar to Arad
et al., an overcomplete dictionary is built using K-SVD during the training stage. In
A+, both the dictionary and the image data are projected to LSR space. For each
LSR dictionary atom li, a sparse coefficient α is then computed by minimizing the least
square error of the linear combination of its nearest neighbors (Nl) with respect to LSR
image data yl.
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min
α

∥yl −Nlα∥22 + λ ∥α∥22 (3.5)

There exists a closed form solution for Equation 3.5.

α =
(
NT

l Nl + λI
)−1

NT
l · yl (3.6)

Similar to LSR space, let Nh donate the nearest neighbors of the hyperspectral atom.
Due to the correspondence between HSR and LSR space, the following equation is
satisfied.

yh = Nhα (3.7)

If we define a projection matrix Pi as follows:

Pi = Nh ·
(
NT

l Nl + λI
)−1

NT
l (3.8)

then it is easy to tell that Pi is the projection matrix from LSR to HSR data. In fact,
combining Equation 3.6, 3.7, 3.8, we can get:

yh = Pi · yl (3.9)

Therefore, after offline computing and storing all the projection matrices, RGB samples
can be embedded into hyperspectral space at the reconstruction stage.

3.1.2 Deep Learning Based Methods

Galliani et al. [1] utilized a variant of fully convolutional DenseNets (FC-DenseNets [57])
for spectral reconstruction. This network architecture was originally meant for image
segmentation. It takes the advantage of DenseNets structure [68]. Figure 3.2 is a brief
illustration of the network, and the complete composition is shown in Table 3.2. There
are three basic building blocks in the network (Table 3.1).

Dense block (DB) Within each block, each layer creates k feature maps, which
are concatenated to the input feature of the layer. One layer within the dense block
is a combination of batch normalization, leaky ReLU, 3 × 3 convolution, and dropout
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(Table 3.1 a). The output of the block is the concatenation of the outputs of all layers.
In [1], k is set to 16, and each block consists of 4 layers, and thus each block creates an
output containing 64 feature maps.

Transition down block (TD) The TD block in the downsampling path reduces
the spatial resolution of the feature map. Rather than merely exploiting max-pooling,
one TD block actually stacks various other operations before pooling, including batch
normalization, leaky ReLU, 3 × 3 convolution (which conserves the number of feature
maps), and dropout (Table 3.1 b).

Transition up block (TU) Galliani et al. used pixel shuffle (also known as sub-pixel
convolution [73]), to upsample feature maps (Table 3.1 c). This is different from the
original FC-DenseNets, which used transposed convolution. Pixel shuffle itself doesn’t
have learnable parameters, so it helps reduce overfitting. It also alleviates checkboard
artifacts commonly caused by transposed convolution.

3.2 Proposed Method

In this section, we give a brief description of the basic components of our method.
Following this, the complete network architecture is proposed.

3.2.1 Building Blocks

There are three basic building blocks in our network: double convolution (Double Conv,
Table 3.3 a), downsample block (Table 3.3 b), and upsample block (Table 3.3 c).

Table 3.1: Basic elements of fully convolutional DenseNets

(a)

One Layer
in Dense Block

Batch normalization
Leaky ReLU

3× 3 convolution
Dropout

(b)

Transition Down (TD)
Batch normalization

Leaky ReLU
1× 1 convolution

Dropout
2× 2 max-pooling

(c)

Transition Down (TD)
Pixel shuffle
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Figure 3.2: Illustration of fully convolutional DenseNets

Table 3.2: The complete composition of the method in [1]. Concatenation operations
are not shown.

Network components Number of features
RGB
Input

Input 3
3× 3 convolution 64

Downsampling
Path

DB + TD 128
DB + TD 192
DB + TD 256
DB + TD 320
DB + TD 384

Bootleneck DB 448

Uownsampling
Path

TU+DB 400
TU+DB 326
TU+DB 272
TU+DB 208
TU+DB 144

Hyperspectral
Output

3× 3 convolution 31
Output 31

Double Conv block This type of block consists of two 3× 3 convolutions. Each of
them is followed by batch normalization, leaky ReLU and dropout. We exploit batch
normalization and dropout to address overfitting.

Downsample block Downsampling is performed using a regular max-pooling layer.
It reduces the spatial size of the feature and enlarges the receptive field of the network.
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Table 3.3: Basic elements of the proposed method

Double Conv
3× 3 convolution

Batch normalization
Leaky ReLU

Dropout
3× 3 convolution

Batch normalization
Leaky ReLU

Dropout

Downsample
2× 2 max-pooling

Upsample
Pixel shuffle

Upsample block Similar to FC-DenseNets, we use pixel shuffle for feature upsam-
pling to improve overfitting and alleviates checkboard artifacts.

3.2.2 Network Architecture

Figure 3.3 demonstrates the structure of our network. We follow the encoder-decoder
pattern. For the encoder part, each downsampling step consists of a “Double Conv”
with a downsample block. The spatial size is progressively reduced, and the number of
features is doubled at each step. The decoder is symmetric to the encoder path. Every
step in the decoder path consists of an upsampling operation followed by a “Double
Conv” block. The spatial size of the features is recovered, while the number of fea-
tures is halved every step. Finally, a 1 × 1 convolution maps the output feature to the
reconstructed 31-band hyperspectral image. In addition to the feedforward path, skip
connections are used to concatenate the corresponding feature maps of the encoder and
decoder.

Our method naturally fits the task of spectral reconstruction. The encoder can be in-
terpreted as extracting features from RGB images. During the downsampling process,
the progressive increase of receptive field allows the network to “see” larger scale of pix-
els, and this non-local information is encoded by the increasing features. The decoder
represents reconstructing hyperspectral images based on these deep and compact fea-
tures. The skip connections with concatenations are essential for inducing multi-scale
information and yielding better estimation of the spectra.

3.2.3 Discussion

The U-Net architecture [74] proposed for biomedical image segmentation is similar to
our network. Here we summerize the main differences of these two networks.
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Figure 3.3: Diagram of the proposed method. “Conv m” represents convolutional
layers with an output of m feature maps. We use 3× 3 convolution in green blocks and

1× 1 convolution in the red block. Gray arrows represent feature concatenation.

• We use zero padding for convolution to keep the spatial size unchanged. In the
original U-Net, feature cropping is required when concatenating features because
of the use of unpadded convolution. Our goal is to avoid losing border features.

• We exploit batch normalization and dropout after each convolution to address the
overfitting problem.

• We use Leaky ReLU instead of regular ReLU as the non-linear activation function.

• We use pixel shuffle instead of transposed convolution to upsample the interme-
diate features. This decreases the amounts of learnable parameters and avoids
checkboard artifacts.
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Chapter 4

Experiments

4.1 Implementation Details

To demonstrate the effectiveness of the proposed method, we compare it with four
spectral super-resolution methods, including spline interpolation, Arad et al. [47], A+
[50], Galliani et al. [1]. [47, 50] are implemented by the codes released by the authors.
Since there is no code released for [1], we reimplement it in this study. In the following,
we will give the implementation details of each method.

Spline interpolation The interpolation algorithm serves as the most primitive base-
line in this study. Specifically, for each RGB pixel pl =

(
r, g, b

)
, we use spline inter-

polation to upsample it and obtain a 31-dimensional spectrum (ph). According to the
visible spectrum (Figure 4.1), the r, g, b values of an RGB pixel are assigned to 700nm,
550nm, and 450nm, respectively.

Figure 4.1: The spectrum of visible light.3

3http://www.gamonline.com/catalog/colortheory/visible.php
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Arad et al. and A+ The low spectral resolution image is assumed to be a directly
downsampled version of the corresponding hyperspectral image using some specific linear
projection matrix. In [47, 50] this matrix is required to be perfectly known. In our
experiments, we fit the projection matrix using training data with conventional linear
regression.

Galliani et al. and our method We experimentally find the optimal set of hyper-
parameters for both methods (summarized in Table 4.1). 50% dropout is applied to
Galliani et al., while our method utilizes 20% dropout rate. All the leaky ReLU activa-
tion functions are applied with a negative slope of 0.2. We train the networks for 100
epochs using Adam optimizer with 10−6 regularization. Weight initialization and learn-
ing rate vary for different methods. For Galliani et al., the weights are initialized via
HeUniform [75], and the learning rate is set to 2× 10−3 for the first 50 epochs, decayed
to 2× 10−4 for the next 50 epochs. As for our method, we use HeNormal initialization
[75]. The initial learning rate is 5 × 10−5 and is multiplied by 0.93 every 10 epochs.
We perform data augmentation by extracting patches of size 64 × 64 with a stride of
40 pixels from training data. The total amount of training samples is over 267, 000. At
the test phase, we directly feed the whole image to the network and get the estimated
hyperspectral image in one single forward pass.

Table 4.1: Implementation details of deep learning based methods

Galliani et al. Ours
Dropout rate 0.5 0.2

Slope for leaky ReLU 0.2 0.2
Initial learning rate 2× 10−3 5× 10−5

Weight penalty 1× 10−6 1× 10−6

Weight initialization HeUniform HeNormal

4.2 Evalutation Metrics

To quantitatively evaluate the performance of the proposed method, we adopt the fol-
lowing two categories of evaluation metrics.

Pixel-level reconstruction error We follow [50] to use absolute and relative root-
mean-square error (RMSE and rRMSE) as quantitative measurement for reconstruction
accuracy. Let I

(i)
h and I

(i)
e denote the ith scalar element of the real and estimated

hyperspectral images, Īh is the average of all elements in Ih, and n is the total number
of elements in one hyperspectral image. There are two formulas for RMSE and rRMSE
respectively.
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RMSE1 =
1

n

n∑
i=1

√(
I
(i)
h − I

(i)
e

)2
(4.1)

RMSE2 =

√√√√ 1

n

n∑
i=1

(
I
(i)
h − I

(i)
e

)2
(4.2)

rRMSE1 =
1

n

n∑
i=1

√(
I
(i)
h − I

(i)
e

)2

I
(i)
h

(4.3)

rRMSE2 =

√√√√√ 1

n

n∑
i=1

(
I
(i)
h − I

(i)
e

)2

Ī2h
(4.4)

Spectral similarity Since the key for spectral super-resolution is to reconstruct
the spectra, we also use spectral angle mapper (SAM) to evaluate the performance of
different methods. SAM calculates the average spectral angle between the spectra of
real and estimated hyperspectral images. Let p(j)

h ,p
(j)
e ϵ RC represents the spectra of the

jth hyperspectral pixel in real and estimated hyperspectral images (C is the number of
bands), and m is the total number of pixels within an image. The SAM value can be
computed as follows.

SAM =
1

m
cos−1

 m∑
j=1

(p
(j)
h )T · p(j)

e∥∥∥p(j)
h

∥∥∥
2
·
∥∥∥p(j)

e

∥∥∥
2

 (4.5)

4.3 Experimental Results

4.3.1 Convergence Analysis

We plot the curve of MSE loss on the training set and the curves of five evaluation
metrics computed on the test set in Figure 4.2. It can be seen that both the training loss
and the value of metrics gradually decrease and ultimately converge with the proceeding
of the training. This demonstrates that the proposed multi-scale convolution neural
network converges well.

4.3.2 Quantitative Results

Table 4.2 provides the quantitative results of our method and all baseline methods. It
can be seen that our model outperforms all competitors with regards to RMSE1 and
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(a) Training curve (b) RMSE1 test curve (c) RMSE2 test curve

(d) rRMSE1 test curve (e) rRMSE2 test curve (f) SAM test curve

Figure 4.2: Training and test curves.

rRMSE1, and produces comparable results to Galliani et al. on RMSE2 and rRMSE2.
More importantly, our method surpasses all the others with respect to spectral angle
mapper. This clearly proves that our model reconstructs spectra more accurately than
other competitors. It is worth pointing out that pixel-level reconstruction error (absolute
and relative RMSE) is not necessarily positively correlated with spectral angle mapper
(SAM). For example, when the pixels of an image are shuffled, RMSE and rRMSE

will remain the same, while SAM will change completely. According to the results in
Table 4.2, we can find that our finely designed network enhances spectral super-resolution
from both aspects, viz., yielding better results on both average root-mean-square error
and spectral angle similarity.

4.3.3 Visual Results

To further clarify the superiority in reconstruction accuracy. We show the absolute
reconstruction error of every test image in Figure 4.5. The error is summarized over all
bands of the hyperspectral image. Since A+ outperforms Arad et al. in terms of any
evaluation metric, we use A+ to represent the sparse coding methods. It can be seen
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that our method yields smoother reconstructed images as well as lower reconstruction
error than other competitors.

In addition, we randomly choose three test images and plot the real and reconstructed
spectra for four pixels in Figure 4.3 to further demonstrate the effectiveness of the
proposed method in spectrum reconstruction. It can be seen that only slight difference
exists between the reconstructed spectra and the ground truth.

According to these results above, we can conclude that the proposed method is effective
in spectral super-resolution and outperforms several state-of-the-art competitors.

Table 4.2: Quantitative results on each test image.

RMSE1

BGU_00257 BGU_00259 BGU_00261 BGU_00263 BGU_00265 Average
Interpolation 1.8622 1.7198 2.8419 1.3657 1.9376 1.9454
Arad et al. 1.7930 1.4700 1.6592 1.8987 1.2559 1.6154

A+ 1.3054 1.3572 1.3659 1.4884 0.9769 1.2988
Galliani et al. 0.7330 0.7922 0.8606 0.5786 0.8276 0.7584

Our 0.6172 0.6865 0.9425 0.5049 0.8375 0.7177
RMSE2

BGU_00257 BGU_00259 BGU_00261 BGU_00263 BGU_00265 Average
Interpolation 3.0774 2.9878 4.1453 2.0874 3.9522 3.2500
Arad et al. 3.4618 2.3534 2.6236 2.5750 2.0169 2.6061

A+ 2.1911 1.9572 1.9364 2.0488 1.3344 1.8936
Galliani et al. 1.2381 1.2077 1.2577 0.8381 1.6810 1.2445

Ours 0.9768 1.3417 1.6035 0.7396 1.7879 1.2899
rRMSE1

BGU_00257 BGU_00259 BGU_00261 BGU_00263 BGU_00265 Average
Interpolation 0.0658 0.0518 0.0732 0.0530 0.0612 0.0610
Arad et al. 0.0807 0.0627 0.0624 0.0662 0.0560 0.0656

A+ 0.0580 0.0589 0.0612 0.0614 0.0457 0.0570
Galliani et al. 0.0261 0.0268 0.0254 0.0237 0.0289 0.0262

Ours 0.0235 0.0216 0.0230 0.0205 0.0278 0.0233
rRMSE2

BGU_00257 BGU_00259 BGU_00261 BGU_00263 BGU_00265 Average
Interpolation 0.1058 0.0933 0.1103 0.0759 0.1338 0.1038
Arad et al. 0.1172 0.0809 0.0819 0.0685 0.0733 0.0844

A+ 0.0580 0.0589 0.0612 0.0614 0.0457 0.0610
Galliani et al. 0.0453 0.0372 0.0331 0.0317 0.0562 0.0407

Ours 0.0357 0.0413 0.0422 0.0280 0.0598 0.0414
SAM (degree)

BGU_00257 BGU_00259 BGU_00261 BGU_00263 BGU_00265 Average
Interpolation 3.9620 3.0304 4.2962 3.1900 3.9281 3.6813
Arad et al. 4.2667 3.7279 3.4726 3.3912 3.3699 3.6457

A+ 3.2952 3.5812 3.2952 3.0256 3.2952 3.2985
Galliani et al. 1.4725 1.5013 1.4802 1.4844 1.8229 1.5523

Ours 1.3305 1.2458 1.7197 1.1360 1.9046 1.4673
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Figure 4.3: Sample results of spectral reconstruction by our method. Top line: RGB
rendition. Bottom line: groundtruth (solid) and reconstructed (dashed) spectral re-

sponse of four pixels identified by the dots in RGB images.

4.4 Sensitivity Analysis

Galliani et al. [1] is similar to ours to a degree in that it also follows the encoder-decoder
pattern, but our model is more robust and less sensitive to hyper-parameters. In order
to prove this, we turn off the dropout (i.e. to set the dropout rate to 0) and re-train
them. Table 4.3 shows the quantitative results on test data. Although the performance
of both models is impaired, our model is much less affected. For Galliani et al. model,
the pixel-level errors are increased by over 60%, with rRMSE1 incremented by as much
as 135.50%. On the contrary, our model is influenced by no more than 50%.

Table 4.3: Quantitative comparison of Galliani et al. and our network with/without
dropout.

Galliani et al. Galliani et al.
(no dropout)

Increment
(%) Ours Ours

(no dropout)
Increment

(%)
RMSE1 0.7584 1.6092 112.18 0.7177 1.0662 48.56
RMSE2 1.2445 2.0492 64.66 1.2899 1.8168 40.85
rRMSE1 0.0262 0.0617 135.50 0.0233 0.0320 37.34
rRMSE2 0.0407 0.0673 65.36 0.0414 0.0593 43.24
SAM 1.5523 2.1358 37.59 1.4673 1.6206 10.45
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In Figure 4.4 we plot the test curve of all evaluation metrics for Galliani et al. and our
model. When turning off dropout, it is clear that the test curve of Galliani et al. (the
green dash line) lies above the other three. While the curves of our model (the blue and
magenta lines) lie close to each other.

Reviewing the architecture of these two networks, we find that the most significant
difference is that Galliani et al. uses dense blocks. Dense blocks encourage a high degree
of feature reuse. This helps with high-level vision tasks, where the key is to extract rich
semantic information. When it comes to the super-resolution task, we hypothesize that
too much feature sharing may lead to unnecessarily repeated computation, thus gives
rise to unstable training.

RMSE1

RMSE2

Figure 4.4
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rRMSE1

rRMSE2

SAM

Figure 4.4: Test error for Galliani et al. [1] and our network with/without dropout.
Only the last 50 epochs are plotted
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Figure 4.5: Visualization of absolute error. From left to right: RGB rendition, A+,
Galliani et al., our method
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Chapter 5

Conclusion

In this thesis, we review the pros and cons of current hyperspectral imaging techniques,
and aim to perform single image spectral super-resolution, i.e. to reconstruct the hyper-
spectral image using one single RGB image.

As for the proposed method, we show that leveraging both the local and non-local infor-
mation of input images is essential for the accurate spectral reconstruction. Following
this idea, we design a novel multi-scale convolutional neural network, which employs a
symmetrically cascaded downsampling-upsampling architecture to jointly encodes the
local and non-local image information for spectral reconstruction. With extensive ex-
periments on a large hyperspectral images dataset, the proposed method clearly outper-
forms several state-of-the-art methods in terms of reconstruction accuracy and spectral
similarity. What’s more, it also guarantees stability and generalizes well.

30
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